To prevent the pollution of water resources, the measurement and the limitation of wastewater discharges are required. Despite the progress in the field of data acquisition systems, sensors are subject to malfunctions that can bias the evaluation of the pollution flow. It is therefore essential to identify potential anomalies in the data before any use. The objective of this work is to deploy artificial intelligence tools to automate the data validation and to assess the added value of this approach in assisting the validation performed by an operator. To do so, we compare two state-of-the-art anomaly detection algorithms on turbidity data in a sewer network. On the one hand, we conclude that the One-class SVM model is not adapted to the nature of the studied data which is heterogeneous and noisy. The Matrix Profile model, on the other hand, provides promising results with a majority of anomalies detected and a relatively limited number of false positives. By comparing these results to the expert validation, it turns out that the use of the Matrix Profile model objectifies and accelerates the validation task while maintaining the same level of performance compared to the annotator agreement rate between two experts.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2023.174DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence tools
8
annotator agreement
8
matrix profile
8
profile model
8
data
6
validation
5
validation wastewater
4
wastewater data
4
data artificial
4

Similar Publications

Artificial intelligence and machine learning capabilities in the detection of acute scaphoid fracture: a critical review.

J Hand Surg Eur Vol

January 2025

Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.

This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.

View Article and Find Full Text PDF

Mature aggressive B-cell lymphomas, such as Burkitt lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL), show variations in microRNA (miRNA) expression. The entity of High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) shares several biological features with both BL and DLBCL but data on its miRNA expression profile are yet scarce. Hence, this study aims to analyze the potential differences in miRNA expression of HGBCL-11q compared to BL and DLBCL.

View Article and Find Full Text PDF

Artificial Intelligence-Based Detection and Numbering of Dental Implants on Panoramic Radiographs.

Clin Implant Dent Relat Res

February 2025

SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.

Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.

Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.

View Article and Find Full Text PDF

Aims: A simplified version of the history, electrocardiogram, age, risk factors, troponin (HEART) score, excluding troponin, has been proposed to rule-out major adverse cardiac events (MACEs). Computerized history taking (CHT) provides a systematic and automated method to obtain information necessary to calculate the HEAR score. We aimed to evaluate the efficacy and diagnostic accuracy of CHT in calculating the HEAR score for predicting MACE.

View Article and Find Full Text PDF

Aims: This study evaluates the performance of OpenAI's latest large language model (LLM), Chat Generative Pre-trained Transformer-4o, on the Adult Clinical Cardiology Self-Assessment Program (ACCSAP).

Methods And Results: Chat Generative Pre-trained Transformer-4o was tested on 639 ACCSAP questions, excluding 45 questions containing video clips, resulting in 594 questions for analysis. The questions included a mix of text-based and static image-based [electrocardiogram (ECG), angiogram, computed tomography (CT) scan, and echocardiogram] formats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!