The hippocampus plays a prominent role in learning and memory formation. The functional integrity of this structure is often compromised after traumatic brain injury (TBI), resulting in lasting cognitive dysfunction. The activity of hippocampal neurons, particularly place cells, is coordinated by local theta oscillations. Previous studies aimed at examining hippocampal theta oscillations after experimental TBI have reported disparate findings. Using a diffuse brain injury model, the lateral fluid percussion injury (FPI; 2.0 atm), we report a significant reduction in hippocampal theta power that persists for at least three weeks after injury. We questioned whether the behavioral deficit associated with this reduction of theta power can be overcome by optogenetically stimulating CA1 neurons at theta in brain injured rats. Our results show that memory impairments in brain injured animals could be reversed by optogenetically stimulating CA1 pyramidal neurons expressing channelrhodopsin (ChR2) during learning. In contrast, injured animals receiving a control virus (lacking ChR2) did not benefit from optostimulation. These results suggest that direct stimulation of CA1 pyramidal neurons at theta may be a viable option for enhancing memory after TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653071 | PMC |
http://dx.doi.org/10.1089/neu.2023.0078 | DOI Listing |
Glia
January 2025
Neurophysiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Autism spectrum disorder (ASD) is marked by neurobehavioral developmental deficits, potentially linked to disrupted neuron-glia interactions. The astroglia Kir4.1 channel plays a vital role in regulating potassium levels during neuronal activation, and mutations in this channel have been associated with ASD.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Tlaxcala, Mexico. Electronic address:
Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy. Electronic address:
Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, Baylor College of Medicine, Houston, United States.
J Neurosci
January 2025
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!