Bisphenols are endocrine disruptors that are characterized with bioaccumulation, persistence, and estrogenic activity. Even low contents of bisphenols can exert adverse effects on human health and the ecological environment. Herein, a method combining accelerated solvent extraction and solid-phase extraction purification with ultra performance liquid chromatography-tandem mass spectrometry was developed for the accurate detection of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), and bisphenol AP (BPAP) in sediments. The mass spectrometric parameters of the seven bisphenols were optimized, and the response values, separation effects, and chromatographic peak shapes of the target compounds were compared under three different mobile phase conditions. The sediment samples were pretreated by accelerated solvent extraction, and orthogonal tests were used to optimize the extraction solvent, extraction temperature, and cycle number. The results showed that the use of 0.05% (v/v) ammonia and acetonitrile as the mobile phase for gradient elution could rapidly separate the seven bisphenols on an Acquity UPLC BEH C column (100 mm×2.1 mm, 1.7 μm). The gradient program was as follows: 0-2 min, 60%A; 2-6 min, 60%A-40%A; 6-6.5 min, 40%A; 6.5-7 min, 40%A-60%A; 7-8 min, 60%A. Orthogonal experiments indicated that the optimal extraction conditions were as follows: extraction solvent of acetonitrile, extraction temperature of 100 ℃, and cycle number of three. The seven bisphenols showed good linearity in the range of 1.0-200 μg/L, with correlation coefficients () greater than 0.999, and the limits of detection were 0.01-0.3 ng/g. The recoveries for the seven bisphenols ranged from 74.9% to 102.8% at three spiking levels (2.0, 10, 20 ng/g), with relative standard deviations ranging from 6.2% to 10.3%. The established method was applied to detect the seven bisphenols in sediment samples collected from Luoma Lake and its inflow rivers. BPA, BPB, BPF, BPS, and BPAF were detected in the sediments of the lake, and BPA, BPF, and BPS were detected in the sediments of its inflow rivers. The detection frequency of BPA and BPF was 100%, and the contents of these bisphenols in the sediment were 11.9-38.0 ng/g and 11.0-27.3 ng/g, respectively. The developed method is simple, rapid with high accuracy and precision, and is suitable for the determination of the seven bisphenols in sediment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311623PMC
http://dx.doi.org/10.3724/SP.J.1123.2022.12015DOI Listing

Publication Analysis

Top Keywords

bisphenols sediment
16
solvent extraction
16
accelerated solvent
12
extraction
10
bisphenols
9
extraction solid-phase
8
solid-phase extraction
8
extraction purification
8
ultra performance
8
performance liquid
8

Similar Publications

In situ self-cleaning removal of emerging organic contaminants with covalent organic framework armed with arylbiguanide.

J Hazard Mater

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China. Electronic address:

An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electronhole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively.

View Article and Find Full Text PDF

Legacy and emerging organophosphate flame retardants (OPFRs) in water and sediment from the Pearl River Delta to the adjacent coastal waters of the South China Sea: Spatioseasonal variations, flux estimation and ecological risk.

Environ Pollut

January 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.

View Article and Find Full Text PDF

Mass load and source apportionment of pharmaceutical and personal care product in the Wuhan section of the Yangtze River, China.

Sci Total Environ

January 2025

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

Given the limited research on pharmaceuticals and personal care products (PPCPs) in the Wuhan section of the Yangtze River (WYR), this work investigated the distribution of 15 PPCPs in this region, assessed their ecological risks and annual fluxes. It was further to analyze the levels of indicator sucralose in the WYR to understand the sources of PPCPs. The results showed the average concentrations were 143.

View Article and Find Full Text PDF

Besides traditional organophosphate esters: The ecological risks of emerging organophosphate esters in the Yangtze River basin cannot be ignored.

Environ Pollut

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

In addition to traditional organophosphate esters (tOPEs), emerging organophosphate esters (eOPEs) have increasingly been detected in the environment, but their risks remain unclear. This study detected 12 tOPEs and 7 eOPEs in surface water, sediment, and suspended particulate matter (SPM) samples from important aquatic habitats and drinking water sources in Yibin (YB), Yichang (YC), Shanghai (SH), and Poyang Lake (PY) within the Yangtze River basin. The total concentration of OPEs (ΣOPEs) in surface water, sediment, and SPM from these four regions were 22.

View Article and Find Full Text PDF

The screening of priority pollutants in the Bohai Sea based on ecological risk assessment.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:

The Bohai Sea (BS) is a semi-enclosed inland sea and China's most polluted coastal sea. With the rapid economic development of the circum-Bohai Sea region, large amounts of pollutants have been discharged into the BS, posing a significant threat to human health and the ecosystem. Great efforts have been made on investigating the levels of various pollutants in the BS; however, the priority pollutants which are required for the implementation of suitable environmental management and remediation measures in this system remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!