Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial Intelligence (AI) is increasingly used to support medical students' learning journeys, providing personalized experiences and improved outcomes. We conducted a scoping review to explore the current application and classifications of AI in medical education. Following the PRISMA-P guidelines, we searched four databases, ultimately including 22 studies. Our analysis identified four AI methods used in various medical education domains, with the majority of applications found in training labs. The use of AI in medical education has the potential to improve patient outcomes by equipping healthcare professionals with better skills and knowledge. Post-implementation refers to the outcomes of AI-based training, which showed improved practical skills among medical students. This scoping review highlights the need for further research to explore the effectiveness of AI applications in different aspects of medical education.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI230581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!