A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparing Emotional Valence Scores of Twitter Messages from Human Coding and Machine Learning Algorithms Among Hispanic and African American Family Caregivers of Persons with Dementia. | LitMetric

We compared emotional valence scores as determined via machine learning approaches to human-coded scores of direct messages on Twitter from our 2,301 followers during a Twitter-based clinical trial screening for Hispanic and African American family caregivers of persons with dementia. We manually assigned emotional valence scores to 249 randomly selected direct Twitter messages from our followers (N=2,301), then we applied three machine learning sentiment analysis algorithms to extract emotional valence scores for each message and compared their mean scores to the human coding results. The aggregated mean emotional scores from the natural language processing were slightly positive, while the mean score from human coding as a gold standard was negative. Clusters of strongly negative sentiments were observed in followers' responses to being found non-eligible for the study, indicating a significant need for alternative strategies to provide similar research opportunities to non-eligible family caregivers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363991PMC
http://dx.doi.org/10.3233/SHTI230526DOI Listing

Publication Analysis

Top Keywords

emotional valence
16
valence scores
16
human coding
12
machine learning
12
family caregivers
12
twitter messages
8
hispanic african
8
african american
8
american family
8
caregivers persons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!