We propose a modified version of the U-Net architecture for segmenting and classifying brain tumors, introducing another output between down- and up-sampling. Our proposed architecture utilizes two outputs, adding a classification output beside the segmentation output. The central idea is to use fully connected layers to classify each image before applying U-Net's up-sampling operations. This is achieved by utilizing the features extracted during the down-sampling procedure and combining them with fully connected layers for classification. Afterward, the segmented image is generated by U-Net's up-sampling process. Initial tests show competitive results against comparable models with 80.83%, 99.34%, and 77.39% for the dice coefficient, accuracy, and sensitivity, respectively. The tests were conducted on the well-established dataset from Nanfang Hospital, Guangzhou, China, and General Hospital, Tianjin Medical University, China, from 2005 to 2010 containing MRI images of 3064 brain tumors.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI230432DOI Listing

Publication Analysis

Top Keywords

u-net architecture
8
brain tumors
8
fully connected
8
connected layers
8
u-net's up-sampling
8
brain tumor
4
tumor classification
4
classification segmentation
4
segmentation dual-outputs
4
dual-outputs u-net
4

Similar Publications

Optimizing Transformer-Based Network via Advanced Decoder Design for Medical Image Segmentation.

Biomed Phys Eng Express

January 2025

Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.

U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.

View Article and Find Full Text PDF

Non-enhanced head computed tomography is widely used for patients presenting with head trauma or stroke, given acute intracranial hemorrhage significantly influences clinical decision-making. This study aimed to develop a deep learning algorithm, referred to as DeepCT, to detect acute intracranial hemorrhage on non-enhanced head computed tomography images and evaluate its clinical applicability. We retrospectively collected 1,815 computed tomography image sets from a single center for model training.

View Article and Find Full Text PDF

Marine pollution due to oil spills presents major risks to coastal areas and aquatic life, leading to serious environmental health concerns. Oil Spill detection using SAR data has transitioned from traditional segmentation to a variety of machine learning & deep learning models like UNET proving its efficiency for the task. This research paper proposes a GSCAT-UNET model for efficient oil spill detection and discrimination from lookalikes.

View Article and Find Full Text PDF

AFN-Net: Adaptive Fusion Nucleus Segmentation Network Based on Multi-Level U-Net.

Sensors (Basel)

January 2025

School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China.

The task of nucleus segmentation plays an important role in medical image analysis. However, due to the challenge of detecting small targets and complex boundaries in datasets, traditional methods often fail to achieve satisfactory results. Therefore, a novel nucleus segmentation method based on the U-Net architecture is proposed to overcome this issue.

View Article and Find Full Text PDF

: This study focuses on the critical task of blood vessel segmentation in medical image analysis, essential for diagnosing cardiovascular diseases and enabling effective treatment planning. Although deep learning architectures often produce very high segmentation results in medical images, coronary computed tomography angiography (CTA) images are more challenging than invasive coronary angiography (ICA) images due to noise and the complexity of vessel structures. : Classical architectures for medical images, such as U-Net, achieve only moderate accuracy, with an average Dice score of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!