Silicone implants are widely used for plastic or reconstruction medical applications. However, they can cause severe infections of inner tissues due to bacterial adhesion and biofilm growth on implant surfaces. The development of new antibacterial nanostructured surfaces can be considered as the most promising strategy to deal with this problem. In this article, we studied the influence of nanostructuring parameters on the antibacterial properties of silicone surfaces. Nanostructured silicone substrates with nanopillars of various dimensions were fabricated using a simple soft lithography technique. Upon testing of the obtained substrates, we identified the optimal parameters of silicone nanostructures to achieve the most pronounced antibacterial effect against the bacterial culture of . It was demonstrated that up to 90% reduction in bacterial population compared to flat silicone substrates can be achieved. We also discussed possible underlying mechanisms behind the observed antibacterial effect, the understanding of which is essential for further progress in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2023.2228206DOI Listing

Publication Analysis

Top Keywords

antibacterial properties
8
properties silicone
8
silicone substrates
8
antibacterial
5
silicone
5
design silicone
4
silicone interfaces
4
interfaces antibacterial
4
silicone implants
4
implants plastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!