Background: Food quality traits related to the genetics of yam influence the acceptability for its consumption. This study aimed at identifying genetic factors underlying sensory and textural quality attributes of boiled and pounded yam, the two dominant food products from white Guinea yam.
Results: A genome-wide association study (GWAS) of a panel of 184 genotypes derived from five multi-parent crosses population was conducted. The panel was phenotyped for the qualities of boiled and pounded yam using sensory quality and instrument-based textural profile assays. The genotypes displayed significant variation for most of the attributes. Population differentiation and structure analysis using principal component analysis (PCA) and population structure-based Bayesian information criteria revealed the presence of four well-defined clusters. The GWAS results from a multi-random mixed linear model with kinship and PCA used as covariate identified 13 single-nucleotide polymorphic (SNP) markers significantly associated with the boiled and pounded yam food qualities. The associated SNP markers explained 7.51-13.04% of the total phenotypic variance with a limit of detection exceeding 4.
Conclusion: Regions on chromosomes 7 and 15 were found to be associated with boiled and pounded yam quality attributes from sensory and instrument-based assays. Gene annotation analysis for the regions of associated SNPs revealed co-localization of several known putative genes involved in glucose export, hydrolysis and glycerol metabolism. Our study is one of the first reports of genetic factors underlying the boiled and pounded yam food quality to pave the way for marker-assisted selection in white Guinea yam. © 2023 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.12816 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!