Background: Loss of muscle mass is linked with impaired quality of life and an increased risk of morbidity and premature mortality. Iron is essential for cellular processes such as energy metabolism, nucleotide synthesis and numerous enzymatic reactions. As the effects of iron deficiency (ID) on muscle mass and function are largely unknown, we aimed to assess the relation between ID and muscle mass in a large population-based cohort, and subsequently studied effects of ID on cultured skeletal myoblasts and differentiated myocytes.
Methods: In a population-based cohort of 8592 adults, iron status was assessed by plasma ferritin and transferrin saturation, and muscle mass was estimated using 24-h urinary creatinine excretion rate (CER). The relationships of ferritin and transferrin saturation with CER were assessed by multivariable logistic regression. Furthermore, mouse C2C12 skeletal myoblasts and differentiated myocytes were subjected to deferoxamine with or without ferric citrate. Myoblast proliferation was measured with a colorimetric 5-bromo-2'-deoxy-uridine ELISA assay. Myocyte differentiation was assessed using Myh7-stainings. Myocyte energy metabolism, oxygen consumption rate and extracellular acidification rate were assessed using Seahorse mitochondrial flux analysis, and apoptosis rate with fluorescence-activated cell sorting. RNA sequencing (RNAseq) was used to identify ID-related gene and pathway enrichment in myoblasts and myocytes.
Results: Participants in the lowest age- and sex-specific quintile of plasma ferritin (OR vs middle quintile 1.62, 95% CI 1.25-2.10, P < 0.001) or transferrin saturation (OR 1.34, 95% CI 1.03-1.75, P = 0.03) had a significantly higher risk of being in the lowest age- and sex-specific quintile of CER, independent of body mass index, estimated GFR, haemoglobin, hs-CRP, urinary urea excretion, alcohol consumption and smoking status. In C2C12 myoblasts, deferoxamine-induced ID reduced myoblast proliferation rate (P-trend <0.001) but did not affect differentiation. In myocytes, deferoxamine reduced myoglobin protein expression (-52%, P < 0.001) and tended to reduce mitochondrial oxygen consumption capacity (-28%, P = 0.10). Deferoxamine induced gene expression of cellular atrophy markers Trim63 (+20%, P = 0.002) and Fbxo32 (+27%, P = 0.048), which was reversed by ferric citrate (-31%, P = 0.04 and -26%, P = 0.004, respectively). RNAseq indicated that both in myoblasts and myocytes, ID predominantly affected genes involved in glycolytic energy metabolism, cell cycle regulation and apoptosis; co-treatment with ferric citrate reversed these effects.
Conclusions: In population-dwelling individuals, ID is related to lower muscle mass, independent of haemoglobin levels and potential confounders. ID impaired myoblast proliferation and aerobic glycolytic capacity, and induced markers of myocyte atrophy and apoptosis. These findings suggest that ID contributes to loss of muscle mass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401536 | PMC |
http://dx.doi.org/10.1002/jcsm.13277 | DOI Listing |
Natl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy.
Background: Recently, environmental pollution has become a significant concern for human, animal, and environmental health, fitting within the "One Health" framework. Among the various environmental contaminants, per- and polyfluoroalkyl substances (PFASs) have gathered substantial attention due to their persistence, bioaccumulation, and adverse health effects. This study aimed to compare the levels of 12 PFASs in the fur, liver, and muscle of wild roe deer to evaluate the feasibility of using fur as a non-invasive biomonitoring matrix.
View Article and Find Full Text PDFTropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFBackground: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.
View Article and Find Full Text PDFAbsence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!