Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Layered double hydroxides (LDHs) have been intensively investigated as promising cathodes for the new concept chloride ion battery (CIB) with multiple advantages of high theoretical energy density, abundant raw materials and unique dendrite-free characteristics. However, driven by the great compositional diversity, a complete understanding of interactions between metal cations, as well as a synergetic effect between metal cations and lattice oxygen on LDH host layers in terms of the reversible Cl-storage capability, is still a crucial but elusive issue. In this work, we synthesized a series of chloride-inserted trinary Mo-doped NiCo-Cl LDH ( = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) with gradient oxygen vacancies as enhanced cathodes toward CIBs. The combination of advanced spectroscopic techniques and theoretical calculations reveals that the Mo dopant facilitates oxygen vacancy formation and varies the valence states of coordinated transition metals, which can not only tune the electronic structure effectively and promote Cl-ion diffusion, but improve the redox activity of LDHs. The optimized MoNiCo-Cl LDH delivers a reversible discharge capacity of 159.7 mA h g after 300 cycles at 150 mA g, which is almost a triple enhancement compared to that of NiCoCl LDH. The superior Cl-storage of trinary MoNiCoCl LDH is attributed to the reversible intercalation/deintercalation of chloride ions in the LDH gallery along with the oxidation state changes in Ni/Ni/Ni, Co/Co/Co and Mo/Mo couples. This simple vacancy engineering strategy provides critical insights into the significance of the chemical interaction of various components on LDH laminates and aims to effectively design more LDH-based cathodes for CIBs, which can even be extended to other halide-ion batteries like fluoride ion batteries and bromide ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh00706e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!