Background: Programmed death ligand 1 (PD-L1) has been demonstrated to facilitate tumor progression and therapeutic resistance in an immune-independent manner. Nevertheless, the function and underlying signaling network(s) of cancer cell-intrinsic PD-L1 action remain largely unknown. Herein, we sought to better understand how ubiquitin-specific peptidase 51 (USP51)/PD-L1/integrin beta-1 (ITGB1) signaling performs a cell-intrinsic role in mediating chemotherapeutic resistance in non-small cell lung cancer (NSCLC).

Methods: Western blotting and flow cytometry were employed for PD-L1 detection in NSCLC cell lines. Coimmunoprecipitation and pulldown analyses, protein deubiquitination assay, tissue microarray, bioinformatic analysis and molecular biology methods were then used to determine the significance of PD-L1 in NSCLC chemoresistance and associated signaling pathways in several different cell lines, mouse models and patient tissue samples. Ubiquitin-7-amido-4-methylcoumarin (Ub-AMC)-based deubiquitinase activity, cellular thermal shift and surface plasmon resonance (SPR) analyses were performed to investigate the activity of USP51 inhibitors.

Results: We provided evidence that cancer cell-intrinsic PD-L1 conferred the development of chemoresistance by directly binding to its membrane-bound receptor ITGB1 in NSCLC. At the molecular level, PD-L1/ITGB1 interaction subsequently activated the nuclear factor-kappa B (NF-κB) axis to elicit poor response to chemotherapy. We further determined USP51 as a bona fide deubiquitinase that targeted the deubiquitination and stabilization of the PD-L1 protein in chemoresistant NSCLC cells. Clinically, we found a significant direct relationship between the USP51, PD-L1 and ITGB1 contents in NSCLC patients with chemoresistant potency. The elevated USP51, PD-L1 and ITGB1 levels were strongly associated with worse patient prognosis. Of note, we identified that a flavonoid compound dihydromyricetin (DHM) acted as a potential USP51 inhibitor and rendered NSCLC cells more sensitive to chemotherapy by targeting USP51-dependent PD-L1 ubiquitination and degradation in vitro and in vivo.

Conclusions: Together, our results demonstrated that the USP51/PD-L1/ITGB1 network potentially contributes to the malignant progression and therapeutic resistance in NSCLC. This knowledge is beneficial to the future design of advanced cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354416PMC
http://dx.doi.org/10.1002/cac2.12460DOI Listing

Publication Analysis

Top Keywords

pd-l1
9
cell-intrinsic role
8
non-small cell
8
cell lung
8
lung cancer
8
progression therapeutic
8
therapeutic resistance
8
cancer cell-intrinsic
8
cell-intrinsic pd-l1
8
cell lines
8

Similar Publications

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Thyroxine alleviates interstitial lung disease induced by combined radiotherapy and immunotherapy.

Cancer Lett

January 2025

Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:

Immune checkpoint blockade (ICB) combined with radiotherapy (RT) has improved patients survival, but also increased the risk of pulmonary adverse effects (AEs). Therefore, to explore potential drug targets for interstitial lung disease (ILD), we investigated the interaction of ICB and RT in pulmonary AEs using the disproportionality analysis and COX regression. Genome-wide association studies, transcriptome analysis, and vivo models highlighted the role of programmed death-ligand-1 (PD-L1) in ILD.

View Article and Find Full Text PDF

Background: Prolgolimab is an IgG1 anti-PD-1 monoclonal antibody with the Fc-silencing 'LALA' mutation. The phase III DOMAJOR study assessed efficacy and safety of prolgolimab in combination with pemetrexed and platinum-based chemotherapy vs placebo in combination with pemetrexed and platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer (NSCLC).

Methods: 292 patients with advanced non-squamous NSCLC were randomized 1:1 to receive 4 cycles of pemetrexed, platinum-based drug and either prolgolimab (3 mg/kg Q3W) or placebo followed by prolgolimab/placebo with pemetrexed until disease progression or toxicity (≤36 months).

View Article and Find Full Text PDF

Short-term starvation boosts anti-PD-L1 therapy by reshaping tumor-associated macrophages in hepatocellular carcinoma.

Hepatology

January 2025

Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.

Background And Aims: Immune checkpoint inhibitors (ICIs) have revolutionized systemic hepatocellular carcinoma (HCC) treatment. Nevertheless, numerous patients are refractory to ICIs therapy. It is currently unknown whether diet therapies such as short-term starvation (STS) combined with ICIs can be used to treat HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!