Mechanical ventilation is a life-saving technology, but it can also inadvertently induce lung injury and increase morbidity and mortality. Currently, there is no easy method of assessing the impact that ventilator settings have on the degree of lung inssflation. Computed tomography (CT), the gold standard for visually monitoring lung function, can provide detailed regional information of the lung. Unfortunately, it necessitates moving critically ill patients to a special diagnostic room and involves exposure to radiation. A technique introduced in the 1980s, electrical impedance tomography (EIT) can non-invasively provide similar monitoring of lung function. However, while CT provides information on the air content, EIT monitors ventilation-related changes of lung volume and changes of end expiratory lung volume (EELV). Over the past several decades, EIT has moved from the research lab to commercially available devices that are used at the bedside. Being complementary to well-established radiological techniques and conventional pulmonary monitoring, EIT can be used to continuously visualize the lung function at the bedside and to instantly assess the effects of therapeutic maneuvers on regional ventilation distribution. EIT provides a means of visualizing the regional distribution of ventilation and changes of lung volume. This ability is particularly useful when therapy changes are intended to achieve a more homogenous gas distribution in mechanically ventilated patients. Besides the unique information provided by EIT, its convenience and safety contribute to the increasing perception expressed by various authors that EIT has the potential to be used as a valuable tool for optimizing PEEP and other ventilator settings, either in the operative room and in the intensive care unit. The effects of various therapeutic interventions and applications on ventilation distribution have already been assessed with the help of EIT, and this document gives an overview of the literature that has been published in this context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210063 | PMC |
http://dx.doi.org/10.1186/s44158-022-00055-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!