A refined information processing capacity metric allows an in-depth analysis of memory and nonlinearity trade-offs in neurocomputational systems.

Sci Rep

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research Centre, 52425, Jülich, Germany.

Published: June 2023

Since dynamical systems are an integral part of many scientific domains and can be inherently computational, analyses that reveal in detail the functions they compute can provide the basis for far-reaching advances in various disciplines. One metric that enables such analysis is the information processing capacity. This method not only provides us with information about the complexity of a system's computations in an interpretable form, but also indicates its different processing modes with different requirements on memory and nonlinearity. In this paper, we provide a guideline for adapting the application of this metric to continuous-time systems in general and spiking neural networks in particular. We investigate ways to operate the networks deterministically to prevent the negative effects of randomness on their capacity. Finally, we present a method to remove the restriction to linearly encoded input signals. This allows the separate analysis of components within complex systems, such as areas within large brain models, without the need to adapt their naturally occurring inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310772PMC
http://dx.doi.org/10.1038/s41598-023-37604-0DOI Listing

Publication Analysis

Top Keywords

processing capacity
8
memory nonlinearity
8
refined processing
4
capacity metric
4
metric allows
4
allows in-depth
4
in-depth analysis
4
analysis memory
4
nonlinearity trade-offs
4
trade-offs neurocomputational
4

Similar Publications

Background: The centralization of decision-making power in the public health care system has a negative impact on the practice of professionals and the quality of home care services (HCS) for seniors. To improve HCS, decentralized management could be a particularly promising approach. To be effective, strategies designed to incorporate this management approach require attention to 3 elements: autonomy of local stakeholders, individual and organizational capacities, and accountability for actions and decisions.

View Article and Find Full Text PDF

Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.

View Article and Find Full Text PDF

Adaptation optimizes sensory encoding for future stimuli.

PLoS Comput Biol

January 2025

Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.

View Article and Find Full Text PDF

The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!