Small mammals reduce activity during high moon illumination under risk of predation by introduced predators.

Sci Rep

School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC, 3363, Australia.

Published: June 2023

Predation influences prey survival and drives evolution of anti-predator behaviour. Anti-predator strategies by prey are stimulated by direct encounters with predators, but also by exposure to indicators of risk such as moonlight illumination and vegetation cover. Many prey species will suffer increased risk on moonlit nights, but risk may be reduced by the presence of dense vegetation. Determining the role of vegetation in reducing perceived risk is important, especially given predictions of increased global wildfire, which consumes vegetation and increases predation. We used remote cameras in southeastern Australia to compare support for the predation risk and habitat-mediated predation risk hypotheses. We examined the influence of moonlight and understorey cover on seven 20-2500 g mammalian prey species and two introduced predators, red foxes and feral cats. Activity of all prey species reduced by 40-70% with increasing moonlight, while one species (bush rat) reduced activity in response to increasing moonlight more sharply in low compared to high understorey cover. Neither predator responded to moonlight. Our findings supported the predation risk hypothesis and provided limited support for the habitat-mediated predation risk hypothesis. For prey, perceived costs of increased predation risk on moonlit nights outweighed any benefits of a brighter foraging environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310734PMC
http://dx.doi.org/10.1038/s41598-023-37166-1DOI Listing

Publication Analysis

Top Keywords

predation risk
20
prey species
12
risk
10
predation
8
introduced predators
8
risk moonlit
8
moonlit nights
8
habitat-mediated predation
8
understorey cover
8
increasing moonlight
8

Similar Publications

The hoarding behaviour of animals has evolved to reduce starvation risk when food resources are scarce, but effects of food limitation on survival of hoarding animals is poorly understood. Eurasian pygmy owls (Glaucidium passerinum) hoard small mammals and birds in natural cavities and nest boxes in late autumn for later use in the following winter. We studied the relative influence of the food biomass in hoards of pygmy owls on their over-winter and over-summer apparent survival.

View Article and Find Full Text PDF

Experiments have shown that predation-risk effects on prey fitness can be highly contingent on environmental conditions, suggesting a potential difficulty in generalizing risk effects on prey abundance in natural settings. Rather than study the influence of a particular controlled factor, we examine the problem with a novel approach. We examined the influence of risk effects in multiple experiments performed under similar study conditions.

View Article and Find Full Text PDF

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major pest of various plants with a worldwide distribution. Extensive use of chemical pesticides has led to the development of resistance in this pest, making biological control agents a viable alternative for its management. The predatory mites, Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) are the most important predators of the two-spotted spider mites.

View Article and Find Full Text PDF

Impact of triclocarban exposure on development and gene expression in the wolf spider, Pardosa pseudoannulata (Araneae: Lycosidae).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China. Electronic address:

Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to water resources and ecosystems. The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is a dominant predator typically inhabiting rice fields or wet habitats near water sources. However, little is known about the effects of TCC on the wolf spiders.

View Article and Find Full Text PDF

Survival and cause-specific mortality rates are vital for evidence-based population forecasting and conservation, particularly for large carnivores, whose populations are often vulnerable to human-caused mortalities. It is therefore important to know the relationship between anthropogenic and natural mortality causes to evaluate whether they are additive or compensatory. Further, the relation between survival and environmental covariates could reveal whether specific landscape characteristics influence demographic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!