Understanding the connection between seismic activity and the earthquake nucleation process is a fundamental goal in earthquake seismology with important implications for earthquake early warning systems and forecasting. We use high-resolution acoustic emission (AE) waveform measurements from laboratory stick-slip experiments that span a spectrum of slow to fast slip rates to probe spatiotemporal properties of laboratory foreshocks and nucleation processes. We measure waveform similarity and pairwise differential travel-times (DTT) between AEs throughout the seismic cycle. AEs broadcasted prior to slow labquakes have small DTT and high waveform similarity relative to fast labquakes. We show that during slow stick-slip, the fault never fully locks, and waveform similarity and pairwise differential travel times do not evolve throughout the seismic cycle. In contrast, fast laboratory earthquakes are preceded by a rapid increase in waveform similarity late in the seismic cycle and a reduction in differential travel times, indicating that AEs begin to coalesce as the fault slip velocity increases leading up to failure. These observations point to key differences in the nucleation process of slow and fast labquakes and suggest that the spatiotemporal evolution of laboratory foreshocks is linked to fault slip velocity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310758 | PMC |
http://dx.doi.org/10.1038/s41467-023-39399-0 | DOI Listing |
BMJ Open Ophthalmol
December 2024
Faculty of Life Sciences and Medicine, King's College London, London, UK.
Introduction: Annual screening for hydroxychloroquine (HCQ) retinopathy is recommended, and electroretinography (ERG) is considered a gold-standard test, but there are screening shortfalls and standard ERG is burdensome and has limited availability. Newer, portable ERG devices using skin-based electrodes may increase screening capacity but need validation. This study aims to determine initial device accuracies and feasibility of further research.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, 2031 NSW, Australia.
Introduction: Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown.
Methods: In 15 participants (9F:6M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) using conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA) and medial gastrocnemius (MG) muscles.
PLoS One
December 2024
Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan.
The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China.
Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.
Objective: Neural interfaces are designed to evoke specific patterns of electrical activity in populations of neurons by stimulating with many electrodes. However, currents passed simultaneously through multiple electrodes often combine nonlinearly to drive neural responses, making evoked responses difficult to predict and control. This response nonlinearity could arise from the interaction of many excitable sites in each cell, any of which can produce a spike.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!