Synthesis of Tetraethoxysilane-Reacted Hydroxyapatite Nanoparticles and Their Stabilization in Phosphate-Buffered Saline.

Langmuir

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Published: July 2023

AI Article Synopsis

Article Abstract

Hydroxyapatite (HA) particle, which is an inorganic component of biological hard tissues, is being applied as a bioceramic for biotechnology and medicine fields. However, early bone formation is difficult in the implantation of well-known stoichiometric HA into our body. To solve this problem, it is important to control the shapes and chemical compositions of the physicochemical properties of HA to be functionalized as the state similar to the biogenic bone. In this study, the physicochemical properties of the HA particles synthesized in the presence of tetraethoxysilane (TEOS) (SiHA particles) were evaluated and investigated. In particular, the surface layers of the SiHA particles were successfully controlled by adding silicate and carbonate ions in the synthetic, which would be involved in the bone formation process, and their elusive reaction behavior with phosphate-buffered saline (PBS) was also evaluated. The results showed that the ions in the SiHA particles increased with the increase in the added TEOS concentration, and the silica oligomer was also formed on the surfaces. The ions were present not only in the HA structures but also on the surface layers, indicating the formation of the non-apatitic layer containing the hydrated phosphate and calcium ions. The change in state of the particles with the immersion in PBS was evaluated, the carbonate ions eluted from the surface layer into PBS, and the free water component in the hydration layer increased with the immersion time in PBS. Therefore, we successfully synthesized the HA particles containing silicate and carbonate ions, suggesting the important state of the surface layer consisting of the characteristic non-apatitic layers. It was found that the ions in the surface layers can react with PBS and leach out, weakening the interaction of hydrated water molecules on the particle surfaces to increase the free water component in the surface layer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00954DOI Listing

Publication Analysis

Top Keywords

siha particles
12
surface layers
12
carbonate ions
12
surface layer
12
phosphate-buffered saline
8
bone formation
8
physicochemical properties
8
silicate carbonate
8
pbs evaluated
8
free water
8

Similar Publications

Controlled and sustained drug release is a critical aspect of drug-delivery systems (DDSs) that can be used in chemotherapy while ensuring therapy effectiveness and biosafety. Hence, polyurethane (PU) is modified using a biomolecule Cystine (CYS) for protracted drug release, aiming to enhance cancer treatment efficacy while minimizing adverse side effects in tumor patients. To confirm the formation of a polymer structure, characterization techniques such as NMR and FTIR are used, and the morphology is determined using SEM.

View Article and Find Full Text PDF

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM).

View Article and Find Full Text PDF

Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA.

View Article and Find Full Text PDF

Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery.

Int J Pharm

August 2023

Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India. Electronic address:

Piperlongumine (PL) is a well-known bioactive alkaloid that has been reported as a potent anticancer molecule but has failed to provide potential activity in translational and clinical applications due to some drawbacks like low bioavailability, hydrophobicity, and rapid degradation. However, nano-formulation is a good choice to increase the bioavailability and enhance cellular uptake of PL. In this study, PL loaded nano-liposomes (NPL) were formulated using the thin-film hydration method and analyzed by Response Surface Methodology (RSM) in order to treat cervical cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!