Ethnopharmacological Relevance: Lamiophlomis rotata (Benth.) Kudo (LR, Lamiaceae) is a traditional Tibetan medicinal material in China. Tibetan medicine classic and research report suggested that LR could be used to cure rheumatoid arthritis (RA). However, the anti-RA active ingredients and pharmacological mechanisms of LR have not been elucidated.

Aim Of The Study: To explore the mechanisms and key active ingredients of total flavonoids from LR (TFLR) against RA.

Materials And Methods: First, the mechanisms of TFLR against RA were investigated on collagen-induced arthritis (CIA) rat model by analyzing paw appearance, paw swelling, arthritis score, spleen index, thymus index, inflammatory cytokine (TNF-α, IL-1β, IL-6 and IL-17) levels in serum, histopathology of ankle joint and synovium from knee joint (hematoxylin-eosin, safranin O-fast green and DAB-TUNEL staining), and apoptosis-related protein (PI3K, Akt1, p-Akt, Bad, p-Bad, Bcl-xL and Bcl-2) levels in the synovium of ankle joints (Western blot). Then, the crucially active ingredients of TFLR against RA were explored by network pharmacology, ingredient analysis, in vitro metabolism and TNF-α-induced human RA synovial fibroblast MH7A proliferation assays. Network pharmacology was applied to predict the key active ingredients of TFLR against RA. The ingredient analysis and in vitro metabolism of TFLR were performed on HPLC, and MH7A proliferation assay were applied to evaluate the predicted results of network pharmacology.

Results: TFLR shown excellently anti-RA effect by reducing paw swelling, arthritis score, spleen index, thymus index and inflammatory cytokine (IL-1β, IL-6 and IL-17) levels, and improving the histopathological changes of ankle joint and synovium from knee joint in CIA rats. Results of Western blot indicated that TFLR reversed the changes of PI3K, p-Akt, p-Bad, Bcl-xL and Bcl-2 levels in the ankle joint synovium of CIA rats. Results of network pharmacology exhibited that luteolin was identified as the pivotal active ingredient of TFLR against RA. The ingredient analysis of TFLR indicated that the main ingredient in TFLR was luteoloside. The in vitro metabolism study of TFLR suggested that luteoloside could be converted to luteolin in artificial gastric juice and intestinal juice. Results of MH7A proliferation assay showed that there was no significant difference between TFLR and equal luteoloside on the viability of MH7A cells, indicating that luteoloside was the key active ingredient of TFLR against RA. Additionally, the luteolin (same mol as luteoloside) showed better inhibitory effect on the viability of MH7A cells than luteoloside.

Conclusion: TFLR showed anti-RA effect, and the mechanism was related to promoting synovial cell apoptosis mediated by PI3K/Akt/Bad pathway. Meanwhile, this work indicated that luteoloside was the key active ingredient of TFLR against RA. This work lays a foundation for providing TFLR product with clear mechanism and stable quality to treat RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.116850DOI Listing

Publication Analysis

Top Keywords

key active
20
active ingredients
20
network pharmacology
16
tflr
16
ingredient tflr
16
ankle joint
12
joint synovium
12
ingredient analysis
12
vitro metabolism
12
mh7a proliferation
12

Similar Publications

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity.

Ecol Lett

January 2025

National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.

Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.

View Article and Find Full Text PDF

Enhanced Genome Editing Activity with Novel Chimeric ScCas9 Variants in Rice.

Adv Sci (Weinh)

January 2025

Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi, 030006, China.

The Streptococcus canis Cas9 protein (ScCas9) recognizes the NNG protospacer adjacent motif (PAM), offering a wider range of targets than that offered by the commonly used S. pyogenes Cas9 protein (SpCas9). However, both ScCas9 and its evolved Sc++ variant still exhibit low genome editing efficiency in plants, particularly at the less preferred NTG and NCG PAM targets.

View Article and Find Full Text PDF

ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation.

Adv Sci (Weinh)

January 2025

Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!