The extracellular matrix (ECM) of tissues consists of multiple proteins, proteoglycans and glycosaminoglycans that form a 3-dimensional meshwork structure. This ECM is exposed to oxidants including peroxynitrite (ONOO/ONOOH) generated by activated leukocytes at sites of inflammation. Fibronectin, a major ECM protein targeted by peroxynitrite, self-assembles into fibrils in a cell-dependent process. Fibrillation of fibronectin can also be initiated in a cell-independent process in vitro by anastellin, a recombinant fragment of the first type-III module in fibronectin. Previous studies demonstrated that modification of anastellin by peroxynitrite impairs its fibronectin polymerization activity. We hypothesized that exposure of anastellin to peroxynitrite would also impact on the structure of ECM from cells co-incubated with anastellin, and influence interactions with cell surface receptors. Fibronectin fibrils in the ECM of primary human coronary artery smooth muscle cells exposed to native anastellin are diminished, an effect which is reversed to a significant extent by pre-incubation of anastellin with high (200-fold molar excess) concentrations of peroxynitrite. Treatment with low or moderate levels of peroxynitrite (2-20 fold molar excess) influences interactions between anastellin and heparin polysaccharides, as a model of cell-surface proteoglycan receptors, and modulates anastellin-mediated alterations in fibronectin cell adhesiveness. Based on these observations it is concluded that peroxynitrite has a dose-dependent influence on the ability of anastellin to modulate ECM structure via interactions with fibronectin and other cellular components. These observations may have pathological implications since alterations in fibronectin processing and deposition have been associated with several pathologies, including atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2023.06.028DOI Listing

Publication Analysis

Top Keywords

anastellin
9
ability anastellin
8
anastellin modulate
8
extracellular matrix
8
structure ecm
8
fibronectin
8
anastellin peroxynitrite
8
molar excess
8
alterations fibronectin
8
peroxynitrite
7

Similar Publications

Novel role of homogalacturonan region of pectin in disrupting the interaction between fibronectin and integrin β1.

Carbohydr Polym

July 2024

The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan. Electronic address:

Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5β1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown.

View Article and Find Full Text PDF

At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed.

View Article and Find Full Text PDF

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global knockout () mice do not efficiently remyelinate following a demyelinating injury.

View Article and Find Full Text PDF

The extracellular matrix (ECM) of tissues consists of multiple proteins, proteoglycans and glycosaminoglycans that form a 3-dimensional meshwork structure. This ECM is exposed to oxidants including peroxynitrite (ONOO/ONOOH) generated by activated leukocytes at sites of inflammation. Fibronectin, a major ECM protein targeted by peroxynitrite, self-assembles into fibrils in a cell-dependent process.

View Article and Find Full Text PDF

Unlabelled: Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global knockout ( ) mice do not efficiently remyelinate following a demyelinating injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!