Aims: Pyroptosis is a unique pro-inflammatory form of programmed cell death which plays a critical role in promoting the pathogenesis of multiple inflammatory and autoimmune diseases. However, the current drug that is capable of inhibition pyroptosis has not been translated successfully in the clinic, suggesting a requirement for drug screening in depth.
Methods: We screened more than 20,000 small molecules and found D359-0396 demonstrates a potent anti-pyroptosis and anti-inflammation effect in both mouse and human macrophage. In vivo, EAE (a mouse model of MS) and septic shock mouse model was used to investigate the protective effect of D359-0396. In vitro experiments we used LPS plus ATP/nigericin/MSU to induce pyroptosis in both mouse and human macrophage, and finally the anti-pyroptosis function of D359-0396 was assessed.
Results: Our findings show that D359-0396 is well-tolerated without remarkable disruption of homeostasis. Mechanistically, while D359-0396 is capable of inhibiting pyroptosis and IL-1β release in macrophages, this process depends on the NLRP3-Casp1-GSDMD pathway rather than NF-κB, AIM2 or NLRC4 inflammasome signaling. Consistently, D359-0396 significantly suppresses the oligomerization of NLRP3, ASC, and the cleavage of GSDMD. In vivo, D359-0396 not only ameliorates the severity of EAE (a mouse model of MS), but also exhibits a better therapeutic effect than teriflunomide, the first-line drug of MS. Similarly, D359-0396 treatment also significantly protects mice from septic shock.
Conclusion: Our study identified D359-0396 as a novel small-molecule with potential application in NLRP3-associated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2023.105565 | DOI Listing |
Biomater Adv
January 2025
Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:
The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.
View Article and Find Full Text PDFCell Rep
January 2025
Molecular Immunology, Justus-Liebig-University Giessen, 35392 Giessen, Germany. Electronic address:
Control of cell proliferation is critical for the lymphocyte life cycle. However, little is known about how stage-specific alterations in cell cycle behavior drive proliferation dynamics during T cell development. Here, we employed in vivo dual-nucleoside pulse labeling combined with the determination of DNA replication over time as well as fluorescent ubiquitination-based cell cycle indicator mice to establish a quantitative high-resolution map of cell cycle kinetics of thymocytes.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA. Electronic address:
Tumor cells must optimize metabolite acquisition between synthesis and uptake from a microenvironment characterized by hypoxia, lactate accumulation, and depletion of many amino acids, including arginine. We performed a metabolism-focused functional screen using CRISPR-Cas9 to identify pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that this protein functions as a high-affinity citrulline transporter.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA. Electronic address:
Here, we present a protocol to alter the production of alternatively spliced mRNA variants, without affecting the overall gene expression, through CRISPR-Cas9-engineered genomic mutations in mice. We describe steps for designing guide RNA to direct Cas9 endonuclease to consensus splice sites, producing transgenic mice through pronuclear injection, and screening for desired mutations in cultured mammalian cells using a minigene splicing reporter. Splice isoform-specific mouse mutants provide valuable tools for genetic analyses beyond loss-of-function and transgenic alleles.
View Article and Find Full Text PDFAngiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!