The incidence of diabetes mellitus and the associated complications are growing worldwide, affecting the patients' quality of life and exerting a considerable burden on health systems. Yet, the increase in fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD), leading to the hypothesis that alterations in bone quality are responsible for the increased risk. Material/compositional properties are important aspects of bone quality, yet information on human bone material/compositional properties in T1D is rather sparse. The purpose of the present study is to measure both the intrinsic material behaviour by nanoindentation, and material compositional properties by Raman spectroscopy as a function of tissue age and microanatomical location (cement lines) in bone tissue from iliac crest biopsies from postmenopausal women diagnosed with long-term T1D (N = 8), and appropriate sex-, age-, BMD- and clinically-matched controls (postmenopausal women; N = 5). The results suggest elevation of advanced glycation endproducts (AGE) content in the T1D and show significant differences in mineral maturity / crystallinity (MMC) and glycosaminoglycan (GAG) content between the T1D and control groups. Furthermore, both hardness and modulus by nanoindentation are greater in T1D. These data suggest a significant deterioration of material strength properties (toughness) and compositional properties in T1D compared with controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302406PMC
http://dx.doi.org/10.1016/j.bone.2023.116832DOI Listing

Publication Analysis

Top Keywords

compositional properties
12
postmenopausal women
12
intrinsic material
8
material compositional
8
women diagnosed
8
diagnosed long-term
8
bone quality
8
material/compositional properties
8
properties t1d
8
content t1d
8

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Introduction: Clinicians are the conduits of high-quality care delivery. Clinicians have driven advancements in pharmacotherapeutics, devices, and related interventions and improved morbidity and mortality in patients with congestive heart failure over the past decade. Yet, the management of congestive heart failure has become extraordinarily complex and has fueled recommendations from the American Heart Association and the American College of Cardiology to optimize the composition of the care team to reduce the health, economic, and the health system burden of high lengths of stay and hospital charges.

View Article and Find Full Text PDF

Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.

View Article and Find Full Text PDF

Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!