Aims: Mitochondrial perturbations are the major culprit of the inflammatory response during the initial phase of cerebral ischemia. The present study explored the neuroprotective effect of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), against hippocampal neuronal loss in an experimental model of brain ischemia/reperfusion (I/R) injury.
Main Methods: Rats were subjected to common carotid artery occlusion for 45 min, followed by reperfusion for 24 h. MitoQ (2 mg/kg; i.p daily) was administered for 7 successive days prior to the induction of brain ischemia.
Key Findings: I/R rats exhibited hippocampal damage evidenced by aggravated mitochondrial oxidative stress, thereby enhancing mtROS and oxidized mtDNA, together with inhibiting mtGSH. Mitochondrial biogenesis and function were also affected, as reflected by the reduction of PGC-1α, TFAM, and NRF-1 levels, as well as loss of mitochondrial membrane potential (△Ψm (. These changes were associated with neuroinflammation, apoptosis, impairment of cognitive function as well as hippocampal neurodegenerative changes in histopathological examination. Notably, SIRT6 was suppressed. Pretreatment with MitoQ markedly potentiated SIRT6, modulated mitochondrial oxidative status and restored mitochondrial biogenesis and function. In addition, MitoQ alleviated the inflammatory mediators, TNF-α, IL-18, and IL-1β and dampened GFAB immunoexpression along with downregulation of cleaved caspase-3 expression. Reversal of hippocampal function by MitoQ was accompanied by improved cognitive function and hippocampal morphological aberrations.
Significance: This study suggests that MitoQ preserved rats' hippocampi from I/R insults via maintenance of mitochondrial redox status, biogenesis, and activity along with mitigation of neuroinflammation and apoptosis, thereby regulating SIRT6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.121895 | DOI Listing |
Neuroscience
January 2025
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.
View Article and Find Full Text PDFF1000Res
January 2025
Faculty of Teaching and Education Sciences, Islamic University of Malang, Malang, East Java, Indonesia.
Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Pathology and Pathophysiology, School of Medicine Nanjing University of Chinese Medicine Nanjing China.
Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:
Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!