A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep-learning assisted bioluminescence tomography method to enable radiation targeting in rat glioblastoma. | LitMetric

AI Article Synopsis

  • A new deep-learning approach has been developed for accurate 3D bioluminescence tomography (BLT) targeting of glioblastoma (GBM), aiming to improve real-time treatment planning and reduce x-ray imaging doses.
  • This method, validated with Monte Carlo simulations and tested on real rat models, achieves sub-millimeter targeting accuracy and high tumor encapsulation rates, demonstrating significant potential in preclinical cancer research.
  • By combining flexibility, accuracy, and speed, the proposed solution enhances BLT-based tumor targeting, outperforming traditional treatment planning methods while maintaining safety and efficacy.

Article Abstract

. A novel solution is required for accurate 3D bioluminescence tomography (BLT) based glioblastoma (GBM) targeting. The provided solution should be computationally efficient to support real-time treatment planning, thus reducing the x-ray imaging dose imposed by high-resolution micro cone-beam CT.. A novel deep-learning approach is developed to enable BLT-based tumor targeting and treatment planning for orthotopic rat GBM models. The proposed framework is trained and validated on a set of realistic Monte Carlo simulations. Finally, the trained deep learning model is tested on a limited set of BLI measurements of real rat GBM models.. Bioluminescence imaging (BLI) is a 2D non-invasive optical imaging modality geared toward preclinical cancer research. It can be used to monitor tumor growth in small animal tumor models effectively and without radiation burden. However, the current state-of-the-art does not allow accurate radiation treatment planning using BLI, hence limiting BLI's value in preclinical radiobiology research.. The proposed solution can achieve sub-millimeter targeting accuracy on the simulated dataset, with a median dice similarity coefficient (DSC) of 61%. The provided BLT-based planning volume achieves a median encapsulation of more than 97% of the tumor while keeping the median geometrical brain coverage below 4.2%. For the real BLI measurements, the proposed solution provided median geometrical tumor coverage of 95% and a median DSC of 42%. Dose planning using a dedicated small animal treatment planning system indicated good BLT-based treatment planning accuracy compared to ground-truth CT-based planning, where dose-volume metrics for the tumor fall within the limit of agreement for more than 95% of cases.. The combination of flexibility, accuracy, and speed of the deep learning solutions make them a viable option for the BLT reconstruction problem and can provide BLT-based tumor targeting for the rat GBM models.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ace308DOI Listing

Publication Analysis

Top Keywords

treatment planning
20
rat gbm
12
gbm models
12
bioluminescence tomography
8
targeting rat
8
planning
8
blt-based tumor
8
tumor targeting
8
deep learning
8
bli measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!