Aortic smooth muscle cells (SMCs) play a vital role in maintaining homeostasis in the aorta by sensing and responding to mechanical stimuli. However, the mechanisms that underlie the ability of SMCs to sense and respond to stiffness change in their environment are still partially unclear. In this study, we focus on the role of acto-myosin contractility in stiffness sensing and introduce a novel continuum mechanics approach based on the principles of thermal strains. Each stress fiber satisfies a universal stress-strain relationship driven by a Young's modulus, a contraction coefficient scaling the fictitious thermal strain, a maximum contraction stress and a softening parameter describing the sliding effects between actin and myosin filaments. To account for the inherent variability of cellular responses, large populations of SMCs are modeled with the finite-element method, each cell having a random number and a random arrangement of stress fibers. Moreover, the level of myosin activation in each stress fiber satisfies a Weibull probability density function. Model predictions are compared to traction force measurements on different SMC lineages. It is demonstrated that the model not only predicts well the effects of substrate stiffness on cellular traction, but it can also successfully approximate the statistical variations of cellular tractions induced by intercellular variability. Finally, stresses in the nuclear envelope and in the nucleus are computed with the model, showing that the variations of cytoskeletal forces induced by substrate stiffness directly induce deformations of the nucleus which can potentially alter gene expression. The predictability of the model combined to its relative simplicity are promising assets for further investigation of stiffness sensing in 3D environments. Eventually, this could contribute to decipher the effects of mechanosensitivity impairment, which are known to be at the root of aortic aneurysms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.105990 | DOI Listing |
Nutrients
January 2025
Grupo de Investigación en Calidad de Vida y Salud, Departamento de Ciencias de la Salud, Universidad Europea de Valencia, 03016 Alicante, Spain.
Introduction: Osteoarthritis (OA) is the most prevalent form of arthritis and affects over 528 million people worldwide. Degenerative joint disease involves cartilage degradation, subchondral bone remodeling, and synovial inflammation, leading to chronic pain, stiffness, and impaired joint function. Initially regarded as a "wear and tear" condition associated with aging and mechanical stress, OA is now recognized as a multifaceted disease influenced by systemic factors such as metabolic syndrome, obesity, and chronic low-grade inflammation.
View Article and Find Full Text PDFAm J Pathol
January 2025
Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA. Electronic address:
Idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung disease have limited treatment options. Fibroblasts are key effector cells that sense matrix stiffness through conformation changes in mechanically sensitive receptors, leading to activation of downstream profibrotic pathways. Here we investigate the role of Piezo2, a mechanosensitive ion channel, in human and mouse lung fibrosis, and its function in myofibroblast differentiation in primary human lung fibroblasts (HLFs).
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States. Electronic address:
Since physiological and pathological events change the mechanical properties of cells, tools that rapidly quantify such changes at the single-cell level can advance the utility of cell mechanics as a label-free biomarker. We demonstrate the capability to probe the population-level elastic modulus and fluidity of MDA-MB-231 cells at a throughput of up to 50 cell/second within a portable microchip. Our sensing scheme adapts a code multiplexing scheme to implement a distributed network of sensors throughout the microchip, thereby compressing all sensing events into a single electrical output.
View Article and Find Full Text PDFSoft comput
October 2024
Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, India.
[This retracts the article DOI: 10.1007/s00500-022-06818-1.].
View Article and Find Full Text PDFMany cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!