Pneumatic actuators are widely studied in soft robotics as they are facile, low cost, scalable, and robust and exhibit compliance similar to many systems found in nature. The challenge is to harness high energy density chemical and biochemical reactions that can generate sufficient pneumatic pressure to actuate soft systems in a controlled and ecologically compatible manner. This investigation evaluates the potential of chemical reactions as both positive and negative pressure sources for use in soft robotic pneumatic actuators. Considering the pneumatic actuation demands, the chemical mechanisms of the pressure sources, and the safety of the system, several gas evolution/consumption reactions are evaluated and compared. Furthermore, the novel coupling of both gas evolution and gas consumption reactions is discussed and evaluated for the design of oscillating systems, driven by the complementary evolution and consumption of carbon dioxide. Control over the speed of gas generation and consumption is achieved by adjusting the initial ratios of feed materials. Coupling the appropriate reactions with pneumatic soft-matter actuators has delivered autonomous cyclic actuation. The reversibility of these systems is demonstrated in a range of displacement experiments, and practical application is shown through a soft gripper that can move, pick up, and let go of objects. Our approach presents a significant step toward more autonomous, versatile soft robots driven by chemo-pneumatic actuators.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2022.0168DOI Listing

Publication Analysis

Top Keywords

pneumatic actuation
8
pneumatic actuators
8
pressure sources
8
soft
6
pneumatic
6
reactions
5
chemically driven
4
driven oscillating
4
oscillating soft
4
soft pneumatic
4

Similar Publications

Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique.

Biomimetics (Basel)

January 2025

Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.

Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.

View Article and Find Full Text PDF

Pneumatic artificial muscles (PAMs) are flexible actuators that can be contracted or expanded by applying air pressure. They are used in robotics, prosthetics, and other applications requiring flexible and compliant actuation. PAMs are basically designed to mimic the function of biological muscles, providing a high force-to-weight ratio and smooth, lifelike movement.

View Article and Find Full Text PDF

A Symmetrical Leech-Inspired Soft Crawling Robot Based on Gesture Control.

Biomimetics (Basel)

January 2025

Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin 300072, China.

This paper presents a novel soft crawling robot controlled by gesture recognition, aimed at enhancing the operability and adaptability of soft robots through natural human-computer interactions. The Leap Motion sensor is employed to capture hand gesture data, and Unreal Engine is used for gesture recognition. Using the UE4Duino, gesture semantics are transmitted to an Arduino control system, enabling direct control over the robot's movements.

View Article and Find Full Text PDF

Animal muscles have complex, three-dimensional structures with fibers oriented in various directions. The tongue, in particular, features a highly intricate muscular system composed of four intrinsic muscles and several types of extrinsic muscles, enabling flexible and diverse movements essential for feeding, swallowing, and speech production. Replicating these structures could lead to the development of multifunctional manipulators and advanced platforms for studying muscle-motion relationships.

View Article and Find Full Text PDF

A lightweight prosthetic hand with 19-DOF dexterity and human-level functions.

Nat Commun

January 2025

Institute of Humanoid Robots, School of Engineering Science, University of Science and Technology of China, Hefei, 230026, China.

A human hand has 23-degree-of-freedom (DOF) dexterity for managing activities of daily living (ADLs). Current prosthetic hands, primarily driven by motors or pneumatic actuators, fall short in replicating human-level functions, primarily due to limited DOF. Here, we develop a lightweight prosthetic hand that possesses biomimetic 19-DOF dexterity by integrating 38 shape-memory alloy (SMA) actuators to precisely control five fingers and the wrist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!