Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway. Pharmacological inhibition of mTORC1 reduced the content of SA-β-Gal positive cells in the population of α5β1-deficient SK-Mel-147 cells. A similar effect was observed with pharmacological and genetic inhibition of the activity of Akt1, one of the three Akt protein kinase isoenzymes; suppression of other Akt isozymes did not affect melanoma cell senescence. The results presented in this work and previously obtained indicate that α5β1 shares with other integrins of the β1 family the function of cell protection from senescence. This function is realized via regulation of the PI3K/Akt1/mTOR signaling pathway, in which Akt1 exhibits a non-canonical activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18097/PBMC20236903156 | DOI Listing |
Fitoterapia
September 2024
Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-001, Brazil. Electronic address:
The Croton genus (Euphorbiaceae) is recognized as a promising source for identifying bioactive compounds with antiproliferative activity. However, knowledge on the chemical composition and activity of Croton floribundus, Croton echinocarpus, and Croton zehntneri is limited. Thus, this study aimed to investigate the antiproliferative activity of these species on cells derived from tumoral breast, lung, and melanoma cells, and primary fibroblasts derived from human skin.
View Article and Find Full Text PDFEur J Pharm Sci
January 2024
Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil. Electronic address:
Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1).
View Article and Find Full Text PDFLife (Basel)
June 2023
Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
Lung cancer is the leading cause of cancer mortality worldwide, and malignant melanomas are highly lethal owing to their elevated metastatic potential. Despite improvements in therapeutic approaches, cancer treatments are not completely effective. Thus, new drug candidates are continuously sought.
View Article and Find Full Text PDFBiomed Khim
June 2023
Institute of Biomedical Chemistry, Moscow, Russia.
Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway.
View Article and Find Full Text PDFJ Inorg Biochem
December 2022
Instituto de Química, Universidade Federal de Alfenas, CEP 37130-000, Alfenas, MG, Brazil.. Electronic address:
Ruthenium compounds are known to be potential drug candidates since they offer the potential for reduced toxicity. Furthermore, the various oxidation states, different mechanisms of action and ligand substitution kinetics give them advantages over platinum-based complexes, making them suitable for use in biological applications. So, herein, novel ruthenium(II) complexes with metronidazole as ligand were obtained [RuCl(MTNZ)(dppb)(4,4'-Mebipy)]PF (1), [RuCl(MTNZ)(dppb)(4,4'-Methoxybipy)]PF (2), [RuCl(MTNZ)(dppb)(bipy)]PF (3) and [RuCl(MTNZ)(dppb)(phen)]PF (4) where, MTNZ = metronidazole, dppb = 1,4-bis(diphenylphosphino)butane, 4,4'-Mebipy = 4,4'-dimethyl-2,2'-bipyridine, 4,4'-Methoxybipy = 4,4'-dimethoxy-2,2'-bipyridine, bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!