Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway. Pharmacological inhibition of mTORC1 reduced the content of SA-β-Gal positive cells in the population of α5β1-deficient SK-Mel-147 cells. A similar effect was observed with pharmacological and genetic inhibition of the activity of Akt1, one of the three Akt protein kinase isoenzymes; suppression of other Akt isozymes did not affect melanoma cell senescence. The results presented in this work and previously obtained indicate that α5β1 shares with other integrins of the β1 family the function of cell protection from senescence. This function is realized via regulation of the PI3K/Akt1/mTOR signaling pathway, in which Akt1 exhibits a non-canonical activity.

Download full-text PDF

Source
http://dx.doi.org/10.18097/PBMC20236903156DOI Listing

Publication Analysis

Top Keywords

sk-mel-147 human
8
human melanoma
8
content sa-β-gal
8
sa-β-gal positive
8
positive cells
8
signaling pathway
8
implication integrin
4
integrin α5β1
4
senescence
4
α5β1 senescence
4

Similar Publications

The Croton genus (Euphorbiaceae) is recognized as a promising source for identifying bioactive compounds with antiproliferative activity. However, knowledge on the chemical composition and activity of Croton floribundus, Croton echinocarpus, and Croton zehntneri is limited. Thus, this study aimed to investigate the antiproliferative activity of these species on cells derived from tumoral breast, lung, and melanoma cells, and primary fibroblasts derived from human skin.

View Article and Find Full Text PDF

Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1).

View Article and Find Full Text PDF

Methoxylated Cinnamic Esters with Antiproliferative and Antimetastatic Effects on Human Lung Adenocarcinoma Cells.

Life (Basel)

June 2023

Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.

Lung cancer is the leading cause of cancer mortality worldwide, and malignant melanomas are highly lethal owing to their elevated metastatic potential. Despite improvements in therapeutic approaches, cancer treatments are not completely effective. Thus, new drug candidates are continuously sought.

View Article and Find Full Text PDF

Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway.

View Article and Find Full Text PDF

Ruthenium compounds are known to be potential drug candidates since they offer the potential for reduced toxicity. Furthermore, the various oxidation states, different mechanisms of action and ligand substitution kinetics give them advantages over platinum-based complexes, making them suitable for use in biological applications. So, herein, novel ruthenium(II) complexes with metronidazole as ligand were obtained [RuCl(MTNZ)(dppb)(4,4'-Mebipy)]PF (1), [RuCl(MTNZ)(dppb)(4,4'-Methoxybipy)]PF (2), [RuCl(MTNZ)(dppb)(bipy)]PF (3) and [RuCl(MTNZ)(dppb)(phen)]PF (4) where, MTNZ = metronidazole, dppb = 1,4-bis(diphenylphosphino)butane, 4,4'-Mebipy = 4,4'-dimethyl-2,2'-bipyridine, 4,4'-Methoxybipy = 4,4'-dimethoxy-2,2'-bipyridine, bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!