Enhanced ASO-Mediated Gene Silencing with Lipophilic pH-Responsive Micelles.

Bioconjug Chem

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

Published: July 2023

Herein, we examine the ASO-mediated gene silencing efficiency of pH-responsive micelles, by incorporating 2-(diisopropylamino)ethyl methacrylate (DIP) into the micelle core and comparing physical and biological properties with non-pH-responsive micelles. Additionally, the lipophilic effect of the micelle cores was examined in both types of micelles. Varying lipophilicity was achieved by varying alkyl monomer chain lengths─butyl (4), lauryl (12), and stearyl (18) methacrylate. Each of the micelles formed within our family offered the added benefit of well-defined and uniform templates for loading antisense oligonucleotide (ASO) payloads. Overall, the micelles followed previously established trends of outperforming their linear polymer (nonmicelle) analogs and ASO only control. More specifically, the highest performing micelles were the pH-responsive micelles with longer alkyl chains or higher lipophilicity─D-DIP+LMA and D-DIP+SMA (∼90% silencing). These two micelles demonstrated silencing efficiencies similar to Jet-PEI and Lipofectamine 2000 and caused lower toxicity than Lipofectamine 2000. The shortest alkyl chain pH-responsive micelle, D-DIP+BMA (64%), displayed strong gene silencing similar to that about that of its non-pH-responsive micelle, D-BMA (68%), and the pH-responsive micelle without an alkyl chain incorporated, D-DIP (59%). This work illuminates a minimum alkyl chain length dependence to allow gene silencing within our micelle family. However, including only longer alkyl chains into the micelle core without the pH-responsive unit DIP had a hindering effect, thus demonstrating the requirement of the DIP unit when including longer alkyl chain lengths. This work demonstrates the exemplary gene silencing efficiencies of polymeric micelles and uncovers the relationship between pH responsiveness and performance with lipophilic polymer micelles for enhancing ASO-mediated gene silencing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.3c00133DOI Listing

Publication Analysis

Top Keywords

gene silencing
24
alkyl chain
16
aso-mediated gene
12
ph-responsive micelles
12
longer alkyl
12
micelles
11
silencing
8
micelle core
8
alkyl chains
8
silencing efficiencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!