The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO /H is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na -HCO cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4 mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4 mice. Again, there was no difference in effects of CO or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO or O were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528273 | PMC |
http://dx.doi.org/10.1113/JP284960 | DOI Listing |
J Neurosci
January 2025
Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
The homeostatic regulation of pulmonary ventilation, and ultimately arterial PCO, depends on interactions between respiratory chemoreflexes and arousal state. The ventilatory response to CO is triggered by neurons in the retrotrapezoid nucleus (RTN) that function as sensors of central pH, which can be identified in adulthood by the expression of Phox2b and neuromedin B. Here, we examine the dynamic response of genetically defined RTN neurons to hypercapnia and arousal state in freely behaving adult male and female mice using the calcium indicator jGCaMP7 and fiber photometry.
View Article and Find Full Text PDFNeuroSci
September 2024
InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.).
Exp Neurol
October 2024
Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil. Electronic address:
Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN).
View Article and Find Full Text PDFJ Neurosci
September 2024
Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
An interoceptive homeostatic reflex monitors levels of CO/H to maintain blood gas homeostasis and rapidly regulate tissue acid-base balance by driving lung ventilation and CO excretion-this CO-evoked increase in respiration is the hypercapnic ventilatory reflex (HCVR). Retrotrapezoid nucleus (RTN) neurons provide crucial excitatory drive to downstream respiratory rhythm/pattern-generating circuits, and their activity is directly modulated by changes in CO/H RTN neurons express GPR4 and TASK-2, global deletion of which abrogates CO/H activation of RTN neurons and the HCVR. It has not been determined if the intrinsic pH sensitivity of these proton detectors is required for these effects.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2024
Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!