AI Article Synopsis

  • Developed advanced composite membranes by electrospinning PVC with metal-organic frameworks (MOFs), specifically UiO-66(COOH)-Ag and ZIF-8-Ag.
  • Characterization techniques confirmed successful integration of MOFs, showing variations in fiber diameters and larger pore sizes compared to traditional PVC membranes.
  • The membranes exhibited up to 95% antibacterial activity against various bacteria types with increasing MOFs-Ag load, suggesting potential applications in antibacterial materials, face masks, and water filtration systems.

Article Abstract

In this work, we utilized electrospinning to develop advanced composite membranes of polyvinyl chloride (PVC) loaded with postmetalated metal-organic frameworks (MOFs), specifically UiO-66(COOH)-Ag and ZIF-8-Ag. This innovative technique led to the creation of highly stable PVC/MOFs-Ag membrane composites, which were thoroughly characterized using various analytical techniques, including scanning electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, porosity analysis, and water contact angle measurement. The results verified the successful integration of MOF crystals within the nanofibrous PVC membranes. The obtained composites exhibited larger fiber diameters for 5 and 10% MOF loadings and a smaller diameter for 20% loading. Additionally, they displayed greater average pore sizes than traditional PVC membranes across most MOF loading percentages. Furthermore, we examined the antibacterial properties of the fabricated membranes at different MOFs-Ag loadings. The findings revealed that the membranes demonstrated significant antibacterial activity up to 95% against both Gram-negative () and Gram-positive () bacteria as the MOFs-Ag loading increased, even when maintaining a constant silver concentration. This indicates a contact-based inhibition mechanism. The outcomes of this study have crucial implications for the development of novel, stable, and highly effective antibacterial materials, which could serve as superior alternatives for face masks and be integrated into materials requiring regular decontamination, as well as potential water filtration systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339785PMC
http://dx.doi.org/10.1021/acs.langmuir.3c01039DOI Listing

Publication Analysis

Top Keywords

pvc membranes
8
membranes
5
electrospun metal-organic
4
metal-organic framework-fabric
4
framework-fabric nanocomposites
4
nanocomposites efficient
4
efficient bactericides
4
bactericides work
4
work utilized
4
utilized electrospinning
4

Similar Publications

Background: Polyether ether ketone (PEEK) was modified by a sulfuric and nitric acid mixed system to improve the solubility of the material and the gas selective permeability of the film. SN1 and SN5, synthesized from mixed acid systems (with ratios of nitric acid and sulfuric acid of 1:1 and 1:5, respectively) were chosen because they had comparable nitro groups but differing sulfonyl groups. To investigate the impact of the type and content of sulfonated and nitrated polyether ether ketone (SNPEEK) on the structure and physicochemical properties of the films, SN1/polyvinyl chloride (PVC) and SN5/polyvinyl chloride films were made by adding varying amounts of SN1 and SN5 (0.

View Article and Find Full Text PDF

Evaluation of biobased materials in the development of polymeric membranes for water capture and purification.

Int J Biol Macromol

January 2025

Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.

The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.

View Article and Find Full Text PDF

The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.

View Article and Find Full Text PDF

Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water.

Polymers (Basel)

December 2024

Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot".

View Article and Find Full Text PDF

Water pollution is a major global issue, and antibiotic drugs released into aquatic environments by the pharmaceutical industry, such as ciprofloxacin, have negative consequences on both human health and the ecosystem. In this study, the performance of PVA as a polymer ligand for ciprofloxacin (CPFX) removal is evaluated through polymer-enhanced ultrafiltration using a novel composite PVC-ZnO membrane. The initial concentration of the ciprofloxacin solution, pH, ionic strength, ideal polymer concentration, duration, and maximum retention capacity were among the factors that were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!