A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Domestic cat nose functions as a highly efficient coiled parallel gas chromatograph. | LitMetric

Domestic cat nose functions as a highly efficient coiled parallel gas chromatograph.

PLoS Comput Biol

Department of Otolaryngology-Head & Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America.

Published: June 2023

The peripheral structures of mammalian sensory organs often serve to support their functionality, such as alignment of hair cells to the mechanical properties of the inner ear. Here, we examined the structure-function relationship for mammalian olfaction by creating an anatomically accurate computational nasal model for the domestic cat (Felis catus) based on high resolution microCT and sequential histological sections. Our results showed a distinct separation of respiratory and olfactory flow regimes, featuring a high-speed dorsal medial stream that increases odor delivery speed and efficiency to the ethmoid olfactory region without compromising the filtration and conditioning purpose of the nose. These results corroborated previous findings in other mammalian species, which implicates a common theme to deal with the physical size limitation of the head that confines the nasal airway from increasing in length infinitely as a straight tube. We thus hypothesized that these ethmoid olfactory channels function as parallel coiled chromatograph channels, and further showed that the theoretical plate number, a widely-used indicator of gas chromatograph efficiency, is more than 100 times higher in the cat nose than an "amphibian-like" straight channel fitting the similar skull space, at restful breathing state. The parallel feature also reduces airflow speed within each coil, which is critical to achieve the high plate number, while feeding collectively from the high-speed dorsal medial stream so that total odor sampling speed is not sacrificed. The occurrence of ethmoid turbinates is an important step in the evolution of mammalian species that correlates to their expansive olfactory function and brain development. Our findings reveal novel mechanisms on how such structure may facilitate better olfactory performance, furthering our understanding of the successful adaptation of mammalian species, including F. catus, a popular pet, to diverse environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10309622PMC
http://dx.doi.org/10.1371/journal.pcbi.1011119DOI Listing

Publication Analysis

Top Keywords

mammalian species
12
domestic cat
8
cat nose
8
gas chromatograph
8
high-speed dorsal
8
dorsal medial
8
medial stream
8
ethmoid olfactory
8
plate number
8
mammalian
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!