This article is concerned with the security problems for networked Takagi-Sugeno (T-S) fuzzy systems with asynchronous premise constraints. The primary objective of this article is twofold. First, a novel important-data-based (IDB) denial-of-service (DoS) attack mechanism is proposed from the perspective of the adversary for the first time to reinforce the destructive effect of the DoS attacks. Different from most existing DoS attack models, the proposed attack mechanism can utilize the information of packets, evaluate the importance degree of packets, and only attack the most "important" ones. As such, a larger system performance degradation can be expected. Second, corresponding to the proposed IDB DoS mechanism, a resilient H fuzzy filter is designed from the defender's point of view to alleviate the negative effect of the attack. Furthermore, since the defender does not know the attack parameter, an algorithm is designed to estimate it. In a word, a unified attack-defense framework is developed in this article for networked T-S fuzzy systems with asynchronous premise constraints. With the help of the Lyapunov functional method, sufficient conditions are successfully established to compute the desired filtering gains and ensure the H performance of the filtering error system. Finally, two examples are exploited to demonstrate the destructiveness of the proposed IDB DoS attack and the usefulness of the developed resilient H filter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2023.3285526 | DOI Listing |
PLoS One
January 2025
Faculty of Informatics and Computing, University Sultan Zainal Abidin, Besut, Terengganu, Malaysia.
Software-Defined Networks (SDN) provides more control and network operation over a network infrastructure as an emerging and revolutionary paradigm in networking. Operating the many network applications and preserving the network services and functions, the SDN controller is regarded as the operating system of the SDN-based network architecture. The SDN has several security problems because of its intricate design, even with all its amazing features.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil.
Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions. Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this proposition quantitatively in a global meta-analysis of comparative functional response studies.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11633, Saudi Arabia.
The rapid growth of Internet of Things (IoT) devices presents significant cybersecurity challenges due to their diverse and resource-constrained nature. Existing security solutions often fall short in addressing the dynamic and distributed environments of IoT systems. This study aims to propose a novel deep learning framework, SecEdge, designed to enhance real-time cybersecurity in mobile IoT environments.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science, College of Charleston, Charleston, SC 29424, USA.
As modern vehicles continue to evolve, advanced technologies are integrated to enhance the driving experience. A key enabler of this advancement is the Controller Area Network (CAN) bus, which facilitates seamless communication between vehicle components. Despite its widespread adoption, the CAN bus was not designed with security as a priority, making it vulnerable to various attacks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!