Industrial chicory ( var. ) is a biannual crop mostly cultivated for extraction of inulin, a fructose polymer used as a dietary fiber. F1 hybrid breeding is a promising breeding strategy in chicory but relies on stable male sterile lines to prevent self-pollination. Here, we report the assembly and annotation of a new industrial chicory reference genome. Additionally, we performed RNA-Seq on subsequent stages of flower bud development of a fertile line and two cytoplasmic male sterile (CMS) clones. Comparison of fertile and CMS flower bud transcriptomes combined with morphological microscopic analysis of anthers, provided a molecular understanding of anther development and identified key genes in a range of underlying processes, including tapetum development, sink establishment, pollen wall development and anther dehiscence. We also described the role of phytohormones in the regulation of these processes under normal fertile flower bud development. In parallel, we evaluated which processes are disturbed in CMS clones and could contribute to the male sterile phenotype. Taken together, this study provides a state-of-the-art industrial chicory reference genome, an annotated and curated candidate gene set related to anther development and male sterility as well as a detailed molecular timetable of flower bud development in fertile and CMS lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298185PMC
http://dx.doi.org/10.3389/fpls.2023.1181529DOI Listing

Publication Analysis

Top Keywords

industrial chicory
16
flower bud
16
anther development
12
male sterile
12
bud development
12
molecular timetable
8
development
8
development male
8
male sterility
8
chicory reference
8

Similar Publications

Chicory ( L., 2n = 18), belonging to the Asteraceae family, exhibits significant edible, medicinal, and pasture values. Moderate research has been performed on identifying Chicory species' chromosomes using fluorescence in situ hybridization (FISH) and C-banding.

View Article and Find Full Text PDF

Cocrystal engineering for sustained release of dicamba: Mitigating secondary drift and reducing leaching.

J Control Release

November 2024

National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.

The off-target effects of herbicides present significant challenges in agricultural practices, posing serious threats to both ecological systems and human health. Dicamba, one of the most widely used herbicides, is particularly problematic due to its high volatility and water solubility, which can lead to rapid environmental dispersal, non-target toxicity, and groundwater contamination. To mitigate these issues, we synthesized a novel cocrystal of dicamba and phenazine (DCB-PHE cocrystal) through a combination of theoretical prediction and mechanochemical screening.

View Article and Find Full Text PDF

This research evaluated the occurrence and bioaccessibility of acrylamide and HMF in commercial instant coffees (IC) and coffee substitutes (CS), considering both isolated consumption and combination with milk. There were no significant differences in acrylamide content between IC and CS samples (median: 589 vs. 671 µg/kg), but higher variability was reported for CS, probably due to their varied composition (roasted cereals, nuts, honey, dehydrated fruits, and/or chicory).

View Article and Find Full Text PDF

Inulin, a prebiotic utilized in the food and pharmaceutical industries, promotes the growth of beneficial bacteria in the colon, thereby enhancing human health. Although inulin is commercially produced from chicory and artichoke, Inula helenium roots offer a high potential for inulin production. The aim of this study is to investigate the prebiotic activity of inulin (inulin-P) from I.

View Article and Find Full Text PDF

Protective effect of short-chain fructo-oligosaccharides from chicory on alcohol-induced injury in GES-1 cells via Keap1/Nrf2 and NLRP3 inflammasome signaling pathways.

Front Nutr

May 2024

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.

Numerous studies have demonstrated that polysaccharides derived from chicory possess the ability to regulate host signaling and modify mucosal damage. Yet, the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on gastric mucosa remain unclear. Hence, the protective effect of three scFOS (1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism involved was investigated in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!