A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of 3D-Bioprinted cartilage-mimicking substitute based on photo-crosslinkable Wharton's jelly bioinks for full-thickness articular cartilage defect repair. | LitMetric

Three-dimensional (3D) bioprinted cartilage-mimicking substitutes for full-thickness articular cartilage defect repair have emerged as alternatives to defect repair models. However, there has been very limited breakthrough in cartilage regeneration based on 3D bioprinting owing to the lack of ideal bioinks with printability, biocompatibility, bioactivity, and suitable physicochemical properties. In contrast to animal-derived natural polymers or acellular matrices, human-derived Wharton's jelly is biocompatible and hypoimmunogenic with an abundant source. Although acellular Wharton's jelly can mimic the chondrogenic microenvironment, it remains challenging to prepare both printable and biologically active bioinks from this material. Here, we firstly prepared methacryloyl-modified acellular Wharton's jelly () using a previously established photo-crosslinking strategy. Subsequently, we combined methacryloyl-modified gelatin with to obtain a hybrid hydrogel that exhibited both physicochemical properties and biological activities that were suitable for 3D bioprinting. Moreover, bone marrow mesenchymal stem cell-loaded 3D-bioprinted cartilage-mimicking substitutes had superior advantages for the survival, proliferation, spreading, and chondrogenic differentiation of bone marrow mesenchymal stem cells, which enabled satisfactory repair of a model of full-thickness articular cartilage defect in the rabbit knee joint. The current study provides a novel strategy based on 3D bioprinting of cartilage-mimicking substitutes for full-thickness articular cartilage defect repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293771PMC
http://dx.doi.org/10.1016/j.mtbio.2023.100695DOI Listing

Publication Analysis

Top Keywords

wharton's jelly
16
full-thickness articular
16
articular cartilage
16
cartilage defect
16
defect repair
16
cartilage-mimicking substitutes
12
3d-bioprinted cartilage-mimicking
8
substitutes full-thickness
8
based bioprinting
8
physicochemical properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!