This work presents operational data of a large-scale solar thermal collector array. The array belongs to a solar thermal plant located at Fernheizwerk Graz, Austria, which feeds into the local district heating network and is one of the largest Solar District Heating installations in Central Europe. The collector array deploys flat plate collectors with a total gross collector area of 516 m (361 kW nominal thermal power). Measurement data was collected in situ within the scientific research project MeQuSo using high-precision measurement equipment and implementing extensive data quality assurance measures. Data compromises one full operational year (2017) in a 1-minute sampling rate with a share of missing data of 8.2%. Several files are provided, including data files and Python scripts for data processing and plot generation. The main dataset contains the measured values of various sensors, including volume flow, inlet and outlet temperature of the collector array, outlet temperatures of single collector rows, global tilted and global horizontal irradiance, direct normal irradiance, and weather data (ambient air temperature, wind speed, ambient relative humidity) at the plant location. Beyond the measurement data, the dataset includes additional calculated data channels, such as thermal power output, mass flow, fluid properties, solar incidence angle and shadowing masks. The dataset also provides uncertainty information in terms of standard deviation of a normal distribution, based either on sensor specifications or on error propagation of the sensor uncertainties. Uncertainty information is provided for all continuous variables, with some exceptions such as the solar geometry, where uncertainty is negligible. The data files include a JSON file containing metadata (e.g., plant parameters, data channel descriptions, physical units, etc.) in both human and machine-readable format. The dataset is suitable for detailed performance and quality analysis and for modelling of flat plate collector arrays. Specifically, it can be helpful to improve and validate dynamic collector array models, radiation decomposition and transposition algorithms, short-term thermal power forecasting algorithms with machine learning techniques, performance indicators, in situ performance checks, dynamic optimization procedures such as parameter estimation or MPC control, uncertainty analyses of measurement setups, as well as testing and validation of open-source software code. The dataset is released under a CC BY-SA 4.0 license. To the best knowledge of the authors, there is no comparable dataset of a large-scale solar thermal collector array publicly available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293986PMC
http://dx.doi.org/10.1016/j.dib.2023.109224DOI Listing

Publication Analysis

Top Keywords

collector array
24
solar thermal
16
data
13
large-scale solar
12
thermal collector
12
thermal power
12
collector
9
operational data
8
flat plate
8
graz austria
8

Similar Publications

Collecting fog water is crucial for dry areas since natural moisture and fog are significant sources of freshwater. Sustainable and energy-efficient water collection systems can take a page out of the cactus's playbook by mimicking its native fog gathering process. Inspired by the unique geometric structure of the cactus spine, we fabricated a bioinspired artificial fog collector consisting of cactus spines featuring barbs of different sizes and angles on the surfaces for water collection and a series of microcavities within microchannels inspired by Nepenthes Alata on the bottom to facilitate water flowing to the reservoir.

View Article and Find Full Text PDF

Fully Printable Manufacturing of Miniaturized, Highly Integrated, Flexible Evaporation-Driven Electricity Generator Arrays.

Adv Sci (Weinh)

December 2024

Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China.

Harvesting sustainable clean energy from natural water evaporation holds great promise to provide continuous power for portable and wearable electronics. However, poor portability and complex fabrication processes hinder the low-cost and large-scale integration of flexible evaporation-driven electricity generators (FEEGs). Herein, a fully-printed flexible evaporation-driven generator (PFEEG) is developed.

View Article and Find Full Text PDF

Bioinspired Antireflective and Antifogging Surface for Highly Efficient and Stable Inverted Solar Cells.

ACS Appl Mater Interfaces

November 2024

Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China.

Photovoltaic devices are essentially solar energy collectors that convert incident photons into charge carriers. However, light reflection losses and external factors (e.g.

View Article and Find Full Text PDF

Lithium (Li) metal batteries (LMBs) have garnered widespread attention due to their high specific capacity. However, the growth of lithium dendrite severely limits their practical applications. Herein, a novel strategy is proposed to regulate the overall potential strength and lithium ions (Li) concentration on the surface of the current collector by utilizing densely distributed tip effects.

View Article and Find Full Text PDF

In past years, concentrated solar power (CSP) with an energy backup system has been a unique renewable energy utilization system among intermittent renewable energy systems. It could allow a CSP plant to operate as a base load system in the future. This paper simulates a solar power plant for 1 MWe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!