Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Voluntary wheel running (VWR) is widely used to study how exercise impacts a variety of physiologies and pathologies in rodents. The primary activity readout of VWR is aggregated wheel turns over a given time interval (most often, days). Given the typical running frequency of mice (∼4 Hz) and the intermittency of voluntary running, aggregate wheel turn counts, therefore, provide minimal insight into the heterogeneity of voluntary activity. To overcome this limitation, we developed a six-layer convolutional neural network (CNN) to determine the hindlimb foot strike frequency of mice exposed to VWR. Aged female C57BL/6 mice (22 months, n = 6) were first exposed to wireless angled running wheels for 2 h/d, 5 days/wk for 3 weeks with all VWR activities recorded at 30 frames/s. To validate the CNN, we manually classified foot strikes within 4800 1-s videos (800 randomly chosen for each mouse) and converted those values to frequency. Upon iterative optimization of model architecture and training on a subset of classified videos (4400), the CNN model achieved an overall training set accuracy of 94%. Once trained, the CNN was validated on the remaining 400 videos (accuracy: 81%). We then applied transfer learning to the CNN to predict the foot strike frequency of young adult female C57BL6 mice (4 months, n = 6) whose activity and gait differed from old mice during VWR (accuracy: 68%). In summary, we have developed a novel quantitative tool that non-invasively characterizes VWR activity at a much greater resolution than was previously accessible. This enhanced resolution holds potential to overcome a primary barrier to relating intermittent and heterogeneous VWR activity to induced physiological responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299834 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1206008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!