Myocardial infarction (MI) is a major cause of mortality and disability globally. MI results from acute or chronic myocardial ischemia characterized by an imbalance of oxygen demand and supply, leading to irreversible myocardial injury. Despite several significant efforts in the understanding of MI, the therapy of MI is not satisfactory due to its complicated pathophysiology. Recently, therapeutic potential of targeting pyruvate kinase M2 (PKM2) has been postulated in several cardiovascular diseases. PKM2 gene knockout and expression studies implicated the role of PKM2 in MI. However, the effects of pharmacological interventions targeting PKM2 have not been investigated in MI. Therefore, in the present study, effect of PKM2 inhibitor has been investigated in the MI along with elucidation of possible mechanism(s). MI in rats was induced by administrations of isoproterenol (ISO) at a dose of 100 mg/kg s.c. for two consecutives days at 24-h interval. At the same time, shikonin (PKM2 inhibitor) was administered at 2 and 4 mg/kg in ISO-induced MI rats. After the shikonin treatment, the ventricular functions were measured using a PV-loop system. Plasma MI injury markers, cardiac histology, and immunoblotting were performed to elucidate the molecular mechanism. Treatment of shikonin 2 and 4 mg/kg ameliorated cardiac injury, reduced infarct size, biochemical alterations, ventricular dysfunction, and cardiac fibrosis in ISO-induced MI. Expression of PKM2 in the ventricle was reduced while PKM1 expression increased in the shikonin treated group, indicating PKM2 inhibition restores PKM1 expression. In addition, PKM splicing protein (hnRNPA2B1 & PTBP1), HIF-1α, and caspase-3 expression were reduced after shikonin treatment. Our findings suggest that pharmacological inhibition of PKM2 with shikonin could be a potential therapeutic strategy to treat MI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-023-02593-4DOI Listing

Publication Analysis

Top Keywords

pkm2
10
pyruvate kinase
8
kinase pkm2
8
pkm2 shikonin
8
myocardial infarction
8
pkm2 inhibitor
8
pkm1 expression
8
shikonin
7
expression
5
inhibition pyruvate
4

Similar Publications

Metabolic reprogramming fuels cancer cell metastasis and remodels the immunosuppressive tumor microenvironment (TME). We report here that circPETH, a circular RNA (circRNA) transported via extracellular vesicles (EVs) from tumor-associated macrophages (TAMs) to hepatocellular carcinoma (HCC) cells, facilitates glycolysis and metastasis in recipient HCC cells. Mechanistically, circPETH-147aa, encoded by circPETH in an m6A-driven manner, promotes PKM2-catalyzed ALDOA-S36 phosphorylation via the MEG pocket.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

The PKM2/HIF-1α Axis is Involved in the Pathogenesis of Endometriosis via TGF-β1 under Endometrial Polyps.

Front Biosci (Landmark Ed)

December 2024

Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.

Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.

Methods: EP samples were collected from patients with and without endometriosis.

View Article and Find Full Text PDF

Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux.

Phytomedicine

December 2024

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China. Electronic address:

Background: Oral squamous cell carcinoma (OSCC) is one of the most common malignancies. However, there is no effective treatment for OSCC.

Purpose: This study aimed to identify a natural compound with significant efficacy against OSCC and elucidate its primary mechanism of action.

View Article and Find Full Text PDF

TIPE () has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!