Heterogeneous photocatalytic systems are usually described based on electrochemistry, which the vast majority of interpretations and strategies for optimizing photocatalysts rely on. Charge carrier dynamics are usually in the spotlight, whereas the surface chemistry of the photocatalyst is neglected. This is unjustified, because studies on alcohol photoreforming on metal-decorated rutile single crystals revealed that the electrochemical reaction model is not generally applicable. Hence, many photocatalytic reactions may proceed in a different manner and the thermal chemistry needs to be accounted for. The new mechanism is particularly relevant for reactions in gaseous environments in the absence of solvated ionic species. Here, we compare both mechanisms and highlight their differences and consequences for photocatalysis. Based on alcohol photochemistry, we demonstrate the importance of thermal reactions in photocatalytic mechanisms and the relevance of systematic studies in different environments for a holistic understanding of photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00504 | DOI Listing |
J Colloid Interface Sci
December 2024
Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:
Employing metallic nanoclusters as cocatalysts for semiconductor-based photocatalysts and understanding their roles in enhancing photocatalytic performance is crucial. Herein, a nickel thiolate with cyclohexanethiol as the ligands (i.e.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
Limitations in solar energy conversion by photocatalysis typically stem from poor underlying charge carrier properties. Transient Absorption (TA) reveals insights on key photocatalytic properties such as charge carrier lifetimes and trapping. However, on the microsecond timescale, these measurements use relatively large probe sizes ranging in millimetres to centimetres which averages the effect of spatial heterogeneity at smaller length scales.
View Article and Find Full Text PDFJ Environ Manage
December 2024
International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco.
The increasing presence of emerging pollutants (EPs) in water poses significant environmental and health risks, necessitating effective treatment solutions. Originating from industrial, agricultural, and domestic sources, these contaminants threaten ecological and public health, underscoring the urgent need for innovative and efficient treatment methods. TiO-based semiconductor photocatalysts have emerged as a promising approach for the degradation of EPs, leveraging their unique band structures and heterojunction schemes.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
In situ measurement of nitric oxide (NO) in living tissue and single cells is highly important for achieving a profound comprehension of cellular functionalities and facilitating the precise diagnosis of critical diseases; however, the progress is greatly hindered by the weak affinity of ultratrace concentration NO in cellular environment toward electrocatalysts. Herein, a new strategy is reported for precisely constructing orbital coupled dual-atomic sites to enhance the affinity between the metal atomic sites and NO on a class of N-doped hollow carbon matrix dual-atomic sites Co─Ni (CoNi-NC) for greatly boosting electrocatalytic NO performance. The as-synthesized CoNi-NC demonstrates a substantially higher current density than Ni-NC and Co-NC, coupled with exceptional stability with a negligible degradation rate of 0.
View Article and Find Full Text PDFChimia (Aarau)
December 2024
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zürich.
Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!