Background And Aims: The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy.

Methods: We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured.

Key Results: The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light.

Conclusions: In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550276PMC
http://dx.doi.org/10.1093/aob/mcad086DOI Listing

Publication Analysis

Top Keywords

anthocyanic leaves
20
red light
20
blue light
16
green leaves
16
leaves
13
leaves cerasifera
12
leaves triloba
12
light
10
leaves prunus
8
prunus cerasifera
8

Similar Publications

We hypothesized that anthocyanins act as a sugar-buffer and an alternative electron sink during leaf senescence to prevent sugar-mediated early senescence and photoinhibition. To elucidate the role of anthocyanin, we monitored seasonal changes in photosynthetic traits, sugar, starch and N contents, pigment composition, and gene expression profiles in leaves exposed to substantially different light conditions within a canopy of an adult fullmoon maple (Acer japonicum) tree. Enhancement of starch amylolysis accompanied by cessation of starch synthesis occurred in the same manner independent of light conditions.

View Article and Find Full Text PDF

Background And Aims: The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy.

Methods: We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field.

View Article and Find Full Text PDF

The reasons behind autumn colors, a striking manifestation of anthocyanin synthesis in plants, are poorly understood. Usually, not all leaves of an anthocyanic plant turn red or only a part of the leaf blade turns red. In the present study, we compared green, red and yellow sections of senescing Norway maple leaves, asking if red pigments offer photoprotection, and if so, whether the protection benefits the senescing tree.

View Article and Find Full Text PDF

Foliar anthocyanins shape a peculiar shade in a red leaf's interior leading to uneven energy distribution between the two photosystems. Accordingly, a readjustment of PSII/PSI stoichiometry could restore excitation balance. To test this hypothesis, 77 K fluorescence emission spectra of thylakoids from green and red leaves of seven species with different pigment profiles were compared.

View Article and Find Full Text PDF

Subcellular Localization and Vesicular Structures of Anthocyanin Pigmentation by Fluorescence Imaging of Black Rice ( L.) Stigma Protoplast.

Plants (Basel)

April 2021

State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China.

Anthocyanins belong to the group of flavonoid compounds broadly distributed in plant species responsible for attractive colors. In black rice ( L.), they are present in the stems, leaves, stigmas, and caryopsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!