Aqueous photoelectrochemical (PEC) cells have long been considered a promising technology to convert solar energy into hydrogen. However, the solar-to-H (STH) efficiency and cost-effectiveness of PEC water splitting are significantly limited by sluggish oxygen evolution reaction (OER) kinetics and the low economic value of the produced O , hindering the practical commercialization of PEC cells. Recently, organic upgrading PEC reactions, especially for alternative OERs, have received tremendous attention, which improves not only the STH efficiency but also the economic effectiveness of the overall reaction. In this review, PEC reaction fundamentals and reactant-product cost analysis of organic upgrading reactions are briefly reviewed, recent advances made in organic upgrading reactions, which are categorized by their reactant substrates, such as methanol, ethanol, glycol, glycerol, and complex hydrocarbons, are then summarized and discussed. Finally, the current status, further outlooks, and challenges toward industrial applications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202300315 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemical and Bimolecular Engineering, National University of Singapore, 117576 Singapore.
Biogas, primarily composed of methane (CH) and carbon dioxide (CO), is considered an alternative renewable energy resource. Efficient CO/CH separation is essential for biogas upgrading to increase energy density, and in this context, metal-organic frameworks (MOFs) have demonstrated significant potential. Here, we integrate multiscale modeling with cross-diversity machine learning (ML) to unveil MOFs with open copper sites (OCS-MOFs) that exhibit exceptional CO/CH separation performance.
View Article and Find Full Text PDFACS Nano
January 2025
National Innovation Center for Industry-Education Integration of Energy Storage, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China.
The utilization of electrolyte additives has been regarded as an efficient strategy to construct dendrite-free aqueous zinc-ion batteries (AZIBs). However, the blurry screening criteria and time-consuming experimental tests inevitably restrict the application prospect of the electrolyte additive strategy. With the rise of artificial intelligence technology, machine learning (ML) provides an avenue to promote upgrading of energy storage devices.
View Article and Find Full Text PDFJ Environ Manage
December 2024
ENGIE Lab Crigen, 93240, Stains, Paris, France. Electronic address:
Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Plant Breeding, Wageningen University & Research, 6708 PB Wageningen, The Netherlands.
The aim of fungal treatment of organic matter for ruminants is the improvement of its degradability. So far, such treatment appears to be time-consuming and improvement has been modest. In previous work, we observed within three white rot species that there is modest () or low ( and ) variation in fiber degradation in wheat straw during seven weeks of incubation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!