Background: Published studies have demonstrated inconclusive relationships between serum lipid levels and mortality after cancer.
Methods: The primary objective was to evaluate the relationship between fasting lipid levels and mortality after cancer. Data were obtained on baseline lipids and outcomes after cancer from 1263 postmenopausal women diagnosed with 13 obesity-related cancers who were part of the Women's Health Initiative (WHI) lipid biomarkers cohort. Obesity-related cancers included incident invasive cancers of the breast, colorectum, endometrium, esophagus (adenocarcinoma), kidney, liver, gallbladder, pancreas, ovaries, small intestine, thyroid, stomach, as well as multiple myeloma. Baseline lipid measurements included high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, and non-HDL-cholesterol. Outcomes were all cause, cancer-specific, and CVD mortality. Multivariable Cox proportional hazards models were used to measure associations between lipid levels and mortality (all cause, cancer, and CVD) after a cancer diagnosis, with lipids analyzed as continuous variables.
Results: Among women with obesity-related cancer, there were 707 deaths, of which 379 (54%) were due to cancer and 113 (16%) were due to CVD. Mean time from blood draw to cancer diagnosis was 5.1 years (range: 0.05-10 years). LDL-C values above the 95th percentile were associated with higher risk of all-cause mortality (p < 0.001), and cancer-specific mortality (p < 0.001), but not mortality due to CVD. Non-HDL-C values above the 65th percentile were associated with higher risk of all-cause mortality (p = 0.01) and mortality due to CVD (p = 0.003), but not cancer-specific mortality (p = 0.37). HDL-C values above the 95th percentile were associated with lower all-cause mortality (p = 0.002), and above the 65th percentile with lower cancer-specific mortality (p = 0.003), but no significant relationship with mortality due to CVD was observed.
Conclusions: The relationship between pre-diagnosis fasting lipid levels and mortality after cancer diagnosis is complex. These results suggest that improved lipid control through lifestyle and anti-lipid medications could have a meaningful impact on outcomes after cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469749 | PMC |
http://dx.doi.org/10.1002/cam4.6266 | DOI Listing |
Sensors (Basel)
December 2024
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
Ovarian cancer (OC) must be detected in its early stages when the mortality rate is the lowest to provide patients with the best chance of survival. Lysophosphatidic acid (LPA) is a critical OC biomarker since its levels are elevated across all stages and increase with disease progression. This paper presents an LPA assay based on a thickness shear mode acoustic sensor with dissipation monitoring that involves a new thiol molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH).
View Article and Find Full Text PDFPharmaceutics
December 2024
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.
With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacology, and Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11865, Egypt.
Skin wrinkles result from a myriad of multifaceted processes involving intrinsic and extrinsic aging. To combat this effect, plant stem cells offer a renewable and eco-friendly source for various industries, including cosmeceuticals. (SM), which contains the bioactive compound Rosmarinic acid (RA) and has been proposed for its anti-wrinkle effect.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iasi, Romania.
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.
View Article and Find Full Text PDFPharmaceutics
November 2024
UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
As life expectancy rises and modern lifestyles improve, there is an increasing focus on health, disease prevention, and enhancing physical appearance. Consumers are more aware of the benefits of natural ingredients in healthcare products while also being mindful of sustainability challenges. Consequently, marine bioactive compounds have gained popularity as ingredients in cosmetics and food supplements due to their diverse beneficial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!