Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-dielectric-constant materials such as silicon dioxide serving as interconnect insulators in current integrated circuit face a great challenge due to their relatively high dielectric constant of ≈4, twice that of the recommended value by the International Roadmap for Devices and Systems, causing severe parasitic capacitance and associated response delay. Here, novel atomic layers of amorphous carbon nitride (a-CN) are prepared via a topological conversion of MXene-Ti CNT under bromine vapor. Remarkably, the assembled a-CN film exhibits an ultralow dielectric constant of 1.69 at 100 kHz, much lower than the previously reported dielectric materials such as amorphous carbon (2.2) and fluorinated-doped SiO (3.6), ascribed to the low density of 0.55 g cm and high sp C level of 35.7%. Moreover, the a-CN film has a breakdown strength of 5.6 MV cm , showing great potential in integrated circuit application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202301399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!