Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( ) in response to change in temperature over space and time. spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (T ) across humid or cold sites worldwide (37 S-79 N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in T across dry and warm sites. temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in T at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPP ) similarly increases by 0.23 g C m day per 1°C increase in in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!