The realization of red-emitting InGaN quantum well (QW) is a hot issue in current nitride semiconductor research. It has been shown that using a low-Indium (In)-content pre-well layer is an effective method to improve the crystal quality of red QWs. On the other hand, keeping uniform composition distribution at higher In content in red QWs is an urgent problem to be solved. In this work, the optical properties of blue pre-QW and red QWs with different well width and growth conditions are investigated by photoluminescence (PL). The results prove that the higher-In-content blue pre-QW is beneficial to effectively relieve the residual stress. Meanwhile, higher growth temperature and growth rate can improve the uniformity of In content and the crystal quality of red QWs, enhancing the PL emission intensity. Possible physical process of stress evolution and the model of In fluctuation in the subsequent red QW are discussed. This study provides a useful reference for the development of InGaN-based red emission materials and devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.488681DOI Listing

Publication Analysis

Top Keywords

red qws
16
optical properties
8
ingan-based red
8
crystal quality
8
quality red
8
blue pre-qw
8
red
7
improvement optical
4
properties ingan-based
4
red multiple
4

Similar Publications

Micro/mini light emitting diodes (LEDs) based on AlInGaN material system have vast potential in display applications. Nevertheless, the low internal quantum efficiency (IQE) of InGaN-based red LED limits its development and application. In the epitaxial structure of our designed red LED, double V-pits layers were used as strain relief layers to reduce compressive strain and improve the IQE of the active layer.

View Article and Find Full Text PDF

Growth of GaInN/GaN Quantum-Wells on a ScAlMgO (0001) Substrate with an - Sputtered-AlN Buffer Layer.

Materials (Basel)

December 2023

Department of Display & Semiconductor Engineering, School of Electrical Engineering, Pukyoung National University, Busan 48513, Republic of Korea.

This study attempted to improve the internal quantum efficiency (IQE) of 580 nm emitting GaInN/GaN quantum-wells (QWs) through the replacement of a conventional -sapphire substrate and an low-temperature GaN (LT-GaN) buffer layer with the ScAlMgO (0001) (SCAM) substrate and an sputtered-AlN (sp-AlN) buffer layer, simultaneously. To this end, we initially tried to optimize the thickness of the sp-AlN buffer layer by investigating the properties/qualities of an undoped-GaN (u-GaN) template layer grown on the SCAM substrate with the sp-AlN buffer layer in terms of surface morphology, crystallographic orientation, and dislocation type/density. The experimental results showed that the crystallinity of the u-GaN layer grown on the SCAM substrate with the 30 nm thick sp-AlN buffer layer [GaN/sp-AlN(30 nm)/SCAM] was superior to that of the conventional u-GaN template layer grown on the -sapphire substrate with an LT-GaN buffer layer (GaN/LT-GaN/FSS).

View Article and Find Full Text PDF

The realization of red-emitting InGaN quantum well (QW) is a hot issue in current nitride semiconductor research. It has been shown that using a low-Indium (In)-content pre-well layer is an effective method to improve the crystal quality of red QWs. On the other hand, keeping uniform composition distribution at higher In content in red QWs is an urgent problem to be solved.

View Article and Find Full Text PDF

In this study, we aimed to better understand the mechanism for creating carrier localization centers (CLCs) in GaInN/GaN quantum wells (QWs) and examine their impacts on device performance. Particularly, we focused on the incorporation of native defects into the QWs as a main cause of the mechanism behind the CLC creation. For this purpose, we prepared two GaInN-based LED samples with and without pre-trimethylindium (TMIn) flow-treated QWs.

View Article and Find Full Text PDF

Although the method of inserting colloidal quantum dots (QDs) into deep nano-holes fabricated on the top surface of a light-emitting diode (LED) has been widely used for producing effective Förster resonance energy transfer (FRET) from the LED quantum wells (QWs) into the QDs to enhance the color conversion efficiency, an important mechanism for enhancing energy transfer in such an LED structure was overlooked. This mechanism, namely, the nanoscale-cavity effect, represents a near-field Purcell effect and plays a crucially important role in enhancing the color conversion efficiency. Here, we demonstrate the results of LED performance, time-resolved photoluminescence (TRPL), and numerical simulation to elucidate the nanoscale-cavity effect on color conversion by inserting a photoresist solution of red-emitting QDs into the nano-holes fabricated on a blue-emitting QW LED.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!