Spectrally incoherent laser pulses with sufficiently large fractional bandwidth are in demand for the mitigation of laser-plasma instabilities occurring in high-energy laser-target interactions. Here, we modeled, implemented, and optimized a dual-stage high-energy optical parametric amplifier for broadband, spectrally incoherent pulses in the near-infrared. The amplifier delivers close to 400 mJ of signal energy through noncollinear parametric interaction of 100-nJ-scale broadband, spectrally incoherent seed pulses near 1053 nm with a narrowband high-energy pump operating at 526.5 nm. Mitigation strategies for high-frequency spatial modulations in the amplified signal caused by index inhomogeneities in the Nd:YLF rods of the pump laser are explored and discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.486561 | DOI Listing |
Nat Commun
January 2025
Department of Electronic Engineering, Tsinghua University, Beijing, China.
Optical neural networks are considered next-generation physical implementations of artificial neural networks, but their capabilities are limited by on-chip integration scale and requirement for coherent light sources. This study proposes a spectral convolutional neural network (SCNN) with matter meta-imaging. The optical convolutional layer is implemented by integrating very large-scale and pixel-aligned spectral filters on CMOS image sensor.
View Article and Find Full Text PDFNanophotonics
June 2024
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.
View Article and Find Full Text PDFNanophotonics
March 2024
Chungbuk National University, Cheongju, Republic of Korea.
Manipulating the spontaneous emission rate of fluorophores is vital in creating bright incoherent illumination for optical sensing and imaging, as well as fast single-photon sources for quantum technology applications. This can be done via increasing the Purcell effect by using non-monolithic optical nanocavities; however, achieving the desired performance is challenging due to difficulties in fabrication, precise positioning, and frequency tuning of cavity-emitter coupling. Here, we demonstrate a simple approach to achieve a wavelength-dependent photoluminescence (PL) lifetime modification using monolithic organic molecular aggregates films.
View Article and Find Full Text PDFNanophotonics
August 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Spectral reconstruction, critical for understanding sample composition, is extensively applied in fields like remote sensing, geology, and medical imaging. However, existing spectral reconstruction methods require bulky equipment or complex electronic reconstruction algorithms, which limit the system's performance and applications. This paper presents a novel flexible all-optical opto-intelligence spectrometer, termed OIS, using a diffractive neural network for high-precision spectral reconstruction, featuring low energy consumption and light-speed processing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025.
Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!