Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.492725DOI Listing

Publication Analysis

Top Keywords

photonic chip
12
three-dimensional photonic
8
multipartite entanglements
8
quantum entanglements
8
experimental 61-partite
4
61-partite entanglement
4
entanglement three-dimensional
4
photonic
4
chip multipartite
4
entanglements
4

Similar Publications

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!