Scanning near-field optical microscopy (SNOM) is an important technique used to study the optical properties of material systems at the nanoscale. In previous work, we reported on the use of nanoimprinting to improve the reproducibility and throughput of near-field probes including complicated optical antenna structures such as the 'campanile' probe. However, precise control over the plasmonic gap size, which determines the near-field enhancement and spatial resolution, remains a challenge. Here, we present a novel approach to fabricating a sub-20 nm plasmonic gap in a near-field plasmonic probe through the controlled collapse of imprinted nanostructures using atomic layer deposition (ALD) coatings to define the gap width. The resulting ultranarrow gap at the apex of the probe provides a strong polarization-sensitive near-field optical response, which results in an enhancement of the optical transmission in a broad wavelength range from 620 to 820 nm, enabling tip-enhanced photoluminescence (TEPL) mapping of 2-dimensional (2D) materials. We demonstrate the potential of this near-field probe by mapping a 2D exciton coupled to a linearly polarized plasmonic resonance with below 30 nm spatial resolution. This work proposes a novel approach for integrating a plasmonic antenna at the apex of the near-field probe, paving the way for the fundamental study of light-matter interactions at the nanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.490112 | DOI Listing |
Biosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.
View Article and Find Full Text PDFACS Nano
December 2024
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.
View Article and Find Full Text PDFIn this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime.
View Article and Find Full Text PDFBiomed Mater
December 2024
AGH University of Krakow, al. A. Mickiewicza 30, Kraków, Krakow, Małopolskie, 30-059, POLAND.
Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide a support for a new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for its use in specific biological tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!