We propose and experimentally demonstrate an intelligent nonlinear compensation method using a stacked autoencoder (SAE) model in conjunction with principal component analysis (PCA) technology and a bidirectional long-short-term memory coupled with ANN (BiLSTM-ANN) nonlinear equalizer for an end-to-end (E2E) fiber-wireless integrated system. The SAE-optimized nonlinear constellation is utilized to mitigate nonlinearity during the optical and electrical conversion process. Our proposed BiLSTM-ANN equalizer is primarily based on time memory and information extraction characteristics, which can compensate for the remaining nonlinear redundancy. A low-complexity 50 Gbps E2E-optimized nonlinear 32 QAM signal is successfully transmitted over a span of 20 km standard single-mode fiber (SSMF) and 6 m wireless link at 92.5 GHz. The extended experimental results indicate that the proposed E2E system can achieve a reduction of up to 78% in BER and a gain in receiver sensitivity of over 0.7 dB at BER of 3.8 × 10. Moreover, computational complexity is reduced by more than 10 times compared to the classical training model.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.493470DOI Listing

Publication Analysis

Top Keywords

fiber-wireless integrated
8
integrated system
8
bilstm-ann equalizer
8
nonlinear
5
nonlinearity mitigation
4
mitigation fiber-wireless
4
system based
4
based low-complexity
4
low-complexity autoencoder
4
autoencoder bilstm-ann
4

Similar Publications

We successfully demonstrate photonics-assisted single-carrier 466.4 Gbit/s wireless transmission over 20 km SSMF and 6 m single-input single-output (SISO) wireless delivery at 92.5 GHz.

View Article and Find Full Text PDF
Article Synopsis
  • - The study successfully implements a 5G fiber-wireless system using polarization multiplexing and self-polarization diversity, which enhances transmission capacity and efficiency.
  • - The self-polarization diversity scheme allows detection of multiple optical signals using a single-ended photodiode, improving the transmission of 5G NR sub-terahertz signals.
  • - Testing over a 20 km fiber and 1.6 km optical wireless link demonstrates the system's capability to deliver high-speed data with low error rates, supporting advanced 5G communications.
View Article and Find Full Text PDF

The integration of fiber-optical wireless convergence with fifth generation new radio is crucial in building high-performance access networks. This approach not only provides high-transmission-rates but also ensures broad coverage, which is vital for future networks. Here we report fifth generation new radio fiber-wireless converged systems by injection locking multi-optical carrier into directly-modulated lasers.

View Article and Find Full Text PDF

We have experimentally demonstrated a constant envelope linear frequency modulated orthogonal frequency division multiplexing (CE-LFM-OFDM) signal by employing an orthogonal frequency division multiplexing (OFDM) signal to phase modulate the linear frequency modulation (LFM) carrier. The experimental verification was conducted in the photonic-based integrated sensing and communication (ISAC) system working at 94.5 GHz.

View Article and Find Full Text PDF

We propose and experimentally demonstrate an intelligent nonlinear compensation method using a stacked autoencoder (SAE) model in conjunction with principal component analysis (PCA) technology and a bidirectional long-short-term memory coupled with ANN (BiLSTM-ANN) nonlinear equalizer for an end-to-end (E2E) fiber-wireless integrated system. The SAE-optimized nonlinear constellation is utilized to mitigate nonlinearity during the optical and electrical conversion process. Our proposed BiLSTM-ANN equalizer is primarily based on time memory and information extraction characteristics, which can compensate for the remaining nonlinear redundancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!