AI Article Synopsis

  • Optical quantum information processing needs efficient interference of quantum light, but using optical fibers can reduce this interference due to polarization issues.
  • * The proposed method optimizes interference visibility by controlling polarizations along two circular paths on the Poincaré sphere, using fiber stretchers as polarization controllers.
  • * Experimental results show this method maintains over 99.9% visibility for three hours with only 0.02 dB (0.5%) optical loss, enhancing the feasibility of fiber systems for practical optical quantum computers.*

Article Abstract

Optical quantum information processing requires low loss interference of quantum light. Also, when the interferometer is composed of optical fibers, degradation of interference visibility due to the finite polarization extinction ratio becomes a problem. Here we propose a low loss method to optimize interference visibility by controlling the polarizations to a crosspoint of two circular trajectories on the Poincaré sphere. Our method maximizes visibility with low optical loss by using fiber stretchers as polarization controllers on both paths of the interferometer. We also experimentally demonstrate our method, where the visibility was maintained basically above 99.9% for three hours using fiber stretchers with an optical loss of 0.02 dB (0.5%). Our method makes fiber systems promising for practical fault-tolerant optical quantum computers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.489082DOI Listing

Publication Analysis

Top Keywords

fiber systems
8
optical quantum
8
low loss
8
interference visibility
8
optical loss
8
fiber stretchers
8
optical
5
low-loss polarization
4
polarization control
4
fiber
4

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Enhancement of quantum synchronization in triple-cavity system.

Sci Rep

January 2025

School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105, China.

We introduce two strategies to enhance quantum synchronization within a triple-cavity optomechanical system, where each cavity contains an oscillator and is interconnected via optical fibers. Our results demonstrate that applying appropriate periodic modulation to the driving fields or the cavity modes can ensure robust quantum synchronization across both open and closed configurations. This approach offers promising avenues for expanding quantum synchronization capabilities in multi-cavity systems and has significant implications for advancing quantum synchronization generation and application in complex networks.

View Article and Find Full Text PDF

Optimization of hypobaric and ultrasonic processing of persimmon rhamnogalacturonan-I to enhance drug-digestion interactions.

Int J Biol Macromol

January 2025

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain. Electronic address:

The biological activity of polysaccharides used for nutraceuticals/drug excipients has been a neglected area of study. This work deals with the preparation, optimization, characterization, and evaluation of persimmon (Diospyros kaki Thunb.) fruit by-products and the study of the resultant dietary fiber (DF) interaction with other compounds, using acetaminophen as a model.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Clinical benefits of central pancreatectomy for a patient with pancreatic schwannoma and diabetes.

World J Surg Oncol

January 2025

Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, China.

Schwannomas are tumors that originate from the glial cells of the nervous system and can occur on myelinated nerve fibers throughout the body, especially in the craniofacial region. However, pancreatic schwannomas are extremely rare. We report a case of a pancreatic schwannoma that was difficult to differentiate from other pancreatic tumors preoperatively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!