AI Article Synopsis

Article Abstract

Inverse lithography technology (ILT), such as source mask optimization (SMO), is used to improve lithography performance. Usually, a single objective cost function is selected in ILT, and an optimal structure for one field point is achieved. The optimal structure is not the case for other images at full field points where the aberrations of the lithography system are different, even in high-quality lithography tools. The optimal structure that must match the high-performance images at the full field is urgently required for extreme ultraviolet lithography (EUVL). In contrast, multi-objective optimization algorithms (MOAs) limit the application of multi-objective ILT. Assigning target priority is incomplete in current MOAs, which results in the over-optimization of some targets and under-optimization of others. In this study, multi-objective ILT and a hybrid dynamic priority (HDP) algorithm were investigated and developed. High-performance images with high fidelity and high uniformity were obtained at multi-field and multi-clip areas across the die. A hybrid criterion was developed for the completion and reasonable prioritization of each target to ensure sufficient improvement. Compared to the current MOAs, the uniformity of images at full-field points was improved by up to 31.1% by the HDP algorithm in the case of multi-field wavefront error-aware SMO. The multi-clip source optimization (SO) problem showed the universality of the HDP algorithm to deal with different ILT problems. It acquired higher imaging uniformity than existing MOAs, which indicated that the HDP is more qualified for multi-objective ILT optimization than existing MOAs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.482130DOI Listing

Publication Analysis

Top Keywords

optimal structure
12
multi-objective ilt
12
hdp algorithm
12
inverse lithography
8
lithography technology
8
hybrid dynamic
8
dynamic priority
8
images full
8
full field
8
high-performance images
8

Similar Publications

Development and validation of the infant nursing assessment scale: Results from exploratory factor analysis and Rasch modeling.

J Pediatr Nurs

January 2025

University of Padua, Laboratory of Studies and Evidence Based Nursing, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua, Italy.

Purpose: The primary challenge in infant care is developing a comprehensive, rapid, and reliable assessment tool that is minimally dependent on subjective evaluations and applicable in various inpatient settings. This study aims to develop and assess the structural validity of the Infant Nursing Assessment Scale (INA), enabling a comprehensive evaluation of hospitalized newborns and infants.

Design And Methods: A development and validation study based on cross-sectional design was undertaken.

View Article and Find Full Text PDF

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Rationale: Bilateral gluteus medius contractures in adults are rare in clinical practice, with only a few cases reported. These contractures may result from repeated intramuscular injections during childhood. Understanding the clinical manifestations, diagnostic process, treatment, and outcomes can provide insights into effective management strategies.

View Article and Find Full Text PDF

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

Langmuir

January 2025

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!