Plastic optical fiber communication (POFC) systems are particularly sensitive to signal performance and power budget. In this paper, we propose what we belive to be a novel scheme to jointly enhance the bit-error-ratio (BER) performance and coupling efficiency for multi-level pulse amplitude modulation (PAM-M) based POFC systems. The computational temporal ghost imaging (CTGI) algorithm is developed for PAM4 modulation for the first time to resist the system distortion. The simulation results reveal that enhanced BER performance and clear eye diagrams are acquired by using CTGI algorithm with an optimized modulation basis. Experimental results also investigate and show, with CTGI algorithm, the BER performance for 180 Mb/s PAM4 signals is enhanced from 2.2 × 10 to 8.4 × 10 over 10 m POF by using a 40 MHz photodetector. The POF link is equipped with micro-lenses at its end faces by using a ball-burning technique, which helps to increase the coupling efficiency from 28.64% to 70.61%. Both simulation and experimental results show that the proposed scheme is feasible to achieve a cost-effective and high-speed POFC system with short reach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.488423 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!