Traditional methods of coherent diffraction imaging using random masks result in an insufficient difference between the diffraction patterns, making it challenging to form a strong amplitude constraint, causing significant speckle noise in the measurement results. Hence, this study proposes an optimized mask design method combining random and Fresnel masks. Increasing the difference between diffraction intensity patterns enhances the amplitude constraint, suppresses the speckle noise effectively, and improves the phase recovery accuracy. The numerical distribution of the modulation masks is optimized by adjusting the combination ratio of the two mask modes. The simulation and physical experiments show that the reconstruction results of PSNR and SSIM using the proposed method are higher than those using random masks, and the speckle noises are effectively reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.489492DOI Listing

Publication Analysis

Top Keywords

modulation masks
8
random masks
8
difference diffraction
8
amplitude constraint
8
speckle noise
8
masks
5
high-precision phase
4
phase retrieval
4
retrieval method
4
speckle
4

Similar Publications

. Adult medulloblastoma (AMB) patients should receive postoperative craniospinal irradiation (CSI) as a standard treatment. Volumetric intensity-modulated arc therapy (VMAT) is a promising method for CSI.

View Article and Find Full Text PDF

Spinning coding masks, recognized for their fast modulation rate and cost-effectiveness, are now often used in real-time single-pixel imaging (SPI). However, in the photon-counting regime, they encounter difficulties in synchronization between the coding mask patterns and the photon detector, unlike digital micromirror devices. To address this issue, we propose a scheme that assumes a constant disk rotation speed throughout each cycle and models photon detection as a non-homogeneous Poisson process (NHPP).

View Article and Find Full Text PDF

Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.

View Article and Find Full Text PDF

Priming of pop-out in the spatial-cueing paradigm.

Atten Percept Psychophys

December 2024

School of Psychological Sciences, Tel Aviv, University, Tel Aviv, Israel.

Searching for a unique target is faster when its unique feature repeats than when it changes. The standard account for this priming-of-popout (PoP) phenomenon is that selecting a target increases the attentional priority of its features in subsequent searches. However, empirical tests of this priority account have yielded contradictory findings.

View Article and Find Full Text PDF

Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!